

HPLC Solvents & Reagents

Presentation

Scharlau has been proud to serve the HPLC community since 1982. Our HPLC solvents, from isocratic to ultra-gradient grade, have been renowned for their high purity and consistent quality.

Scharlau's HPLC range has evolved in the same way as HPLC science has moved to more specific and sensitive detection systems. The development of new detectors provides users with the capability to obtain more and better information about the samples, but at the same time means they have to use purer solvents to prepare the mobile phases.

You will find a complete NEW line of LC/MS products in this catalogue.

LC-MS has experienced significant advances in the last decade and is now, a powerful technique used in pharmaceutical development, proteomics, genomics, organic trace analysis and in many other research applications. We have developed a specific LC/MS solvent quality to fulfil the requirements of this technique. Our new LC/MS solvents combine gradient-grade specifications with suitability for MS interfaces. The LC/MS range also includes new mobile phase blends typically used in LC/MS analysis of biomolecules.

At this point, we would especially like to thank a number of customers who have helped us with their valuable opinions to develop the new LC/MS product line.

Finally, the last few pages of this publication contain practical information for new HPLC users that will help them achieve greater familiarity with chromatography.

Working to become your preferred supplier,

Scharlau Chemie S.A.

Contact us however you like

1. Directly. A staff of 11 personnel in our CCT (Customer Care Team) group are available to answer any questions you might have about products, services, orders and queries. You can contact them by e-mail, fax or phone at our new offices:

Tel. +34 93 745 64 26 Fax +34 93 715 27 65 E-mail: export@scharlau.com Post: Gato Pérez, 33 Pol. Ind. Mas d'en Cisa 08181 Sentmenat **BARCELONA, SPAIN**

LEBANON

Libya Lithuania

MADAGASCAR

MALAYSIA MALTA MAURITANIA MAURITIUS

MOLDOVA

Morocco

NIGERIA

MOZAMBIQUE

MYANMAR New Caledonia New Zealand

2. Through our distributors in any of the following countries:

Albania
Algeria
Angola
Argentina
Australia
Austria
Bahrain
BALTIC REPUBLICS
Bangladesh
Barbados
Belgium
Benin
Bolivia
Bosnia & Herzegovina
Botswana

Brunei BRUNEI BULGARIA CALEDONIA CHAD CHILE CHINA P.R. COLOMBIA COSTA RICA CÔTE D'IVOIRE COTE D TVOIRE CROATIA CUBA CYPRUS CZECH REPUBLIC Denmark Dominican Republic ECUADOR Egypt El Salvador ESTONIA ETHIOPIA FINLAND FRANCE FRENCH POLYNESIA GERMANY GHANA GREECE GUADALUPE GUINEA CONAKRY Haiti Hong Kong

HUNGARY CELAND INDIA INDONESIA IRAN IRAQ IRELAND SRAEL TALY JORDAN Κεννά Korea Kosovo Kuwait Latvia

NORWAY PAKISTAN PALESTINE PALESTINE PANAMA PERU PHILIPPINES POLAND PORTUGAL Qatar Reunion Island Rumania Russia Rwanda Saudi Arabia Senegal

SINGAPORE SLOVAKIA SLOVENIA SOUTH AFRICA SRI-LANKA SUDAN SULTANATE OF OMAN Sweden Switzerland SYRIA ΤΔΙΨΔΝ TAIWAN TANZANIA THAILAND THE NETHERLANDS TOGO

Tonga Tonga Trinidad & Tobago Tunisia Turkey Uganda Ukraine United Arab Emirates United Kingdom United States Venezueia VENEZUELA VIETNAM YEMEN YUGOSLAVIA Zambia ZIMBABWE

3. At any time, you can have a look at our catalogues and news and place your orders through the Internet on our web sites:

www.scharlab.com www.scharlau.com

Both sites are linked. In www.scharlab.com you will find all information about our complete business product range, including all our chemicals and any consumables or instrumentation used in the analytical laboratory.

www.scharlau.com contains all information related to the chemicals and culture media we manufacture (on-line catalogue, literature, MSDS and CoA).

Our raw materials are carefully selected, so that purification can be performed to comply with the most stringent specifications.

High-efficiency distillation, solid-phase absorption and other chemical treatments are used to remove impurities that could interfere in HPLC analysis.

Quality control is intensively carried out. Samples are taken and analysed at every step

of the purification process. Ultraviolet spectroscopy, gradient HPLC and Karl Fischer titration are routinely used in our controls. Specific QC tests are also performed on LC/MS solvents and blends to assure suitability for this technique.

Solvents are micro-filtered and bottled under inert gas atmosphere in amber glass bottles. Caps are fitted with PTFE liners to prevent contamination.

Once the whole batch is bottled, our QC staff choose random bottles and test them again to assure the quality of bottling conditions.

The result is the highest purity product with low UV absorption, low water and low reactive impurities content as well as lot-to-lot consistency and reproducibility.

Scharlau Chemie has been certified as compliant with ISO 9001: 2000 and ISO 14001: 2004.

LC/MS is a powerful analytical technique because it combines the separation done in HPLC and the structure information obtained from a mass spectrometer. This hyphenated technique is becoming a must in the identification and quantification of peptides, oligonucleotides and metabolites in life science and pharmaceutical laboratories.

There are different LC/MS system configurations having different ionisation interfaces that eliminate the solvent and generate gas phase ions. The quality of this process is affected by the purity of the solvents used.

LC/MS solvents must be free of impurities that could react in APCI (Atmospheric Pressure Chemical Ionisation), generating large quantities of ions that would be added to the background. Even in ESI (Electrospray Ionisation), trace impurities can be added to the background.

When performing quantitative analysis, the presence of interfering compounds might alter the results due to ion suppression.

In addition, particulates must be effectively removed by filtration through 0,22µm. Otherwise, they could clog small narrow-bore columns. The content of alkali ions is also a critical issue because they could form clusters during molecular ion generation and interfere in the mass spectra. Using LC/MS-grade solvent is highly recommended to avoid all these adverse effects.

AC0371

LC/MS products

DESCRIPTION	ART. NR.
Acetonitrile, LC-MS	AC0371
Acetonitrile with 0,1% acetic acid, LC-MS	AC0374
Acetonitrile with 0,1% formic acid, LC-MS	AC0373
Acetonitrile with 0,1% trifluoroacetic acid, LC-MS	AC0372
Ammonium acetate, solution 10mmol/l in water, buffered at pH = 7, LC-MS	AM0262
Ethyl acetate, LC-MS	AC0158
Formic acid, solution 10% in water, for cleaning purposes, LC-MS	AC1075
Methanol, LC-MS	ME0326
Methanol with 0,1% acetic acid, LC-MS	ME0329
Methanol with 0,1% ammonium acetate, LC-MS	ME0330
Methanol with 0,1% trifluoroacetic acid, LC-MS	ME0327
Mixture 2-propanol/water, 50/50 (v/v) for cleaning purposes, LC-MS	ME0797
2-Propanol, LC-MS	AL0326
Water, LC-MS	AG0006
Water with 0,1% acetic acid, LC-MS	AG0009
Water with 0,1% ammonium acetate, LC-MS	AG0010
Water with 0,1% formic acid, LC-MS	AG0008
Water with 0,1% trifluoroacetic acid, LC-MS	AG0007

LC/MS is widely used in proteomics. In this application, usually, 0,1% of an organic acid is added to both water and organic solvent. The acid is used to improve the chromatographic peak shape and to provide a source of protons in reverse phase LC/MS. Sulphuric, hydrochloric and strong inorganic acids may damage the instrument. These acids are replaced by volatile organic acids like formic acid, trifluoroacetic acid and acetic acid. Heptafluorobutyric acid is also sometimes used. Sulphonic acids, which are used in ion pair chromatography, are not suitable in LC/MS. Because of their high boiling points, they could clog the electrospray.

Phosphate buffers suppress MS ionisation and should also be avoided.

DESCRIPTION	ART. NR.
Acetic acid glacial, HPLC grade	AC0346
Heptafluorobutiric acid 99,5%	AC1235
Trifluoroacetic acid, buffer substance, HPLC grade	AC3143

LC/MS INTERFACES

Most applications are now done with these two API (Atmospheric Pressure Ionisation) interfaces:

ELECTROSPRAY (ESI)

Electrospray is the most widely used API technique for the analysis of polar and ionic compounds. It can be performed in positive or negative mode. The compound of interest is ionised in solution. Using an electrospray probe, the liquid sample stream is sprayed and a strong electric field is applied. The analytes are ionised and then desolvated with the assistance of high-temperature gas flow to produce gas phase ions.

Mobile phases used with ESI must have an appropriate pH so that analytes will be ionised. Buffers used to adjust the pH of mobile phases should be volatile and be present at low concentrations to avoid competition effects.

ESI is the technique of choice to analyse proteins and biopolymers.

ATMOSPHERIC PRESSURE CHEMICAL IONISATION (APCI)

APCI provides ionisation capabilities for less polar and neutral chemical species. With APCI, solvent and analytes are volatilised and submitted to a corona discharge. The eluent vapour is ionised and reacts chemically with the analyte molecules in the gas phase to transform them into charged ions. It is also possible to work in positive or negative mode.

Mobile phases used in APCI must be suitable for ionisation and for gas phase acid-base reactions. Buffers must be volatile.

Water is one of the key solvents in reverse-phase gradient HPLC.

Nater gradient grade

Using a non-appropriate water quality could be an important source of problems in HPLC.

Organic impurities present in water decrease the baseline quality and reduce column lifetime. At high ppb levels, these impurities introduce ghost peaks and affect the identification and quantification of trace components.

lonic impurities could change the stationary phase selectivity affecting the separation.

Our HPLC water purification technology involves treatment with activated carbon, deionisation, reverse osmosis, UV photo-oxidation and micro-filtration. After purification, the resistivity and TOC are monitored and a gradient elution test is performed to ensure the suitability for HPLC.

Water is also used in the preparation of HPLC buffers. Since most buffers are good media for bacterial growth, freshly prepared solutions should always be used to help prevent column clogging.

Isocratic HPLC is the most important application of Multisolvent[®] but not the only one. In recent years, our customers have found Multisolvent[®] useful for many applications. Here are some of them:

MultiSolvent® applications

Analysis. We guarantee our Multisolvent[®] as "reagentgrade" quality. This means, that our products meet the specifications of the ACS (American Chemical Society) for "Reagent Chemicals". In actual fact, our solvents exceed these specifications by far, since the ACS mentions only the maximum level of impurities allowed.

The actual content of each product is tested by means of an GC chromatogram (FID detector), printed on the label. These guarantees make our Multisolvent[®] an ideal solvent for analytical procedures.

HPLC. Probably the most widely used detector in HPLC is the UV detector. Our Multisolvent[®] products are controlled by a UV spectrophotometer, to insure adequate UV transmissions for HPLC purposes. Multisolvent[®] is ideal for isocratic HPLC techniques. There's no need to worry about time-consuming microfiltration. Our solvents come free from pump-damaging particles.

UV. Multisolvent[®] products are checked with a scanning UV-VIS spectrophotometer. The spectrum is printed on the label as proof of suitability.

Karl Fischer. Although not a "dry" product, the low water content in Multisolvent[®] makes it suitable for routine Karl Fischer titrations at a very competitive price. In the case of methanol, the water content of our Multisolvent[®] (typically below 0,03%) is much lower than what is specified by the ACS (max. 0,1% water) for Karl Fischer reagents.

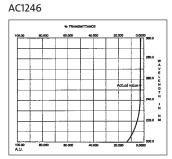
Column chromatography. This separation technique is routinely used in organic chemistry to purify synthesised molecules. The solvent used to develop the column must be pure enough to assure clean NMR spectra after total evaporation.

Anhydrous solvent production. Multisolvent[®] has a very low water content and is ideal for use as a starting solvent in the production of anhydrous solvents. Regardless of whether thermal distillation or pressure column technologies are used to obtain anhydrous solvents, solvents with a low water content should be used.

DESCRIPTION	ART. NR.
Acetone, Multisolvent [®] HPLC grade ACS ISO UV-VIS	AC0310
Acetonitrile, Multisolvent [®] HPLC grade ACS UV-VIS	AC0333
Benzene, Multisolvent [®] HPLC grade ACS ISO UV-VIS	BE0041
Chloroform, stabilized with ethanol, Multisolvent® HPLC grade ACS ISO UV-VIS	CL0218
Cyclohexane, Multisolvent [®] HPLC grade ACS ISO UV-VIS	C10039
Dichloromethane, stabilized with approx. 50 ppm of amylene,	CL0347
Multisolvent [®] HPLC grade ACS ISO UV-VIS	
N,N–Dimethylformamide, Multisolvent [®] HPLC grade ACS ISO UV–VIS	DI1072
Ethanol absolute, Multisolvent [®] HPLC grade ACS ISO UV-VIS	ET0015
Ethanol 96% v/v, Multisolvent HPLC grade ACS UV-VIS	ET0013
Ethyl acetate Multisolvent [®] HPLC grade ACS ISO UV-VIS	ET0155
n-Hexane, 96%, Multisolvent [®] HPLC grade ACS UV-VIS	HE0234
Hexane, fraction from petroleum, Multisolvent [®] HPLC grade ACS	HE0221
Methanol, Multisolvent [®] HPLC grade ACS ISO UV-VIS K.F.	ME0315
Petroleum ether, boiling range 40-60°C,	ET0095
Multisolvent [®] HPLC grade ACS ISO UV-VIS	
2-Propanol, Multisolvent [®] HPLC grade ACS ISO UV-VIS	AL0321
Tetrahydrofuran, Multisolvent [®] GPC grade ACS,	TE0228
stabilized with 250 ppm of 2,6-Di-tert-butyl-4-methylphenol (BHT)	
Toluene, Multisolvent [®] HPLC grade ACS ISO UV-VIS	T00085

Ion pair reagents and HPLC reagents

lon pair reagents


The separation of ionic or polar molecules using a reverse phase chromatography system is affected by the polar interactions between the analyte and the stationary phase.

lon suppression was the first mechanism used to avoid undesirable polar interactions. It consists of changing the mobile phase pH to have the analytes in non-ionised form. This is not always possible. When mixtures of compounds having very different pKa are analysed or when the required pH exceeds the range where the silica is stable, ion suppression cannot be used.

lon pairing is a more interesting approach. Ion pair reagents are large ionic molecules having a hydrophobic part able to interact with the long chain alkyl groups of the stationary phase, as well as a charge opposite to the analyte of interest. When the ion pair reagent is added to the mobile phase, it combines with the analyte counter-ion and a neutral species is formed. Then, an optimum reverse phase separation is achieved.

Basic compounds need anionic ion pair reagents. Alkanesulphonic acids are typically used. Acid compounds need cationic ion pair reagents. Quaternary ammonium or phosphonium salts are usually used.

DESCRIPTION	ART. NR.
1-Butane sulfonic acid, sodium salt, HPLC grade	AC0601
1-Decane sulfonic acid, sodium salt, HPLC grade	AC0801
1-Heptane sulfonic acid, sodium salt, solution 0,1 mol/l, HPLC grade	AC1240
1-Heptane sulfonic acid, sodium salt monohydrate, HPLC grade	AC1242
1-Hexane sulfonic acid, sodium salt, solution 0,1 mol/l, HPLC grade	AC1245
1-Hexane sulfonic acid, sodium salt, monohydrate, HPLC grade	AC1247
1-Octane sufonic acid, sodium salt, solution 0,1 mol/l, HPLC grade	AC1700
1-Octane sulfonic acid, sodium salt, monohydrate, HPLC grade	AC1702
1-Pentane sulfonic acid, sodium salt, solution 0,1 mol/l, HPLC grade	AC1740
1-Pentane sulfonic acid, sodium salt monohydrate, HPLC grade	AC1745

Ion pair reagents from Scharlau have a specially low UV absorption.

DESCRIPTION	ART. NR.
n-Dodecyltrimethylammonium bromide, HPLC grade	BR0180
Hexadecyltrimethylammonium bromide, HPLC grade	BR0170
Tetrabutylammonium bromide, HPLC grade	BR0200
Tetrabutylammonium chloride, HPLC grade	TE0118
Tetrabutylammonium hydrogen sulfate, for ion pair chromatography	TE0120
Tetrabutylammonium iodide, HPLC grade	TE0130

HPLC reagents

Our HPLC-grade salts contain no UV-absorbing impurities. We guarantee the absence of

particles in the solutions by means of a filtering test.

DESCRIPTION	ART. NR.
Ammonium acetate, HPLC grade	AM0255
Ammonium carbonate, HPLC grade	AM0267
Potassium dihydrogen phosphate, HPLC grade	P00261
di-Potassium hydrogen phosphate trihydrate, HPLC grade	P00270
Sodium acetate trihydrate, HPLC grade	S00030
Sodium hydrogen carbonate, HPLC grade	S00130
Sodium formate, HPLC grade	S00325
di-Sodium hydrogen phosphate dihydrate, HPLC grade	S00345
Sodium lauryl sulfate, for ion-pair chromatography	S00456

Containers and packaging

HPLC Solvents and Reagents

Containers

We take extra care with the quality of our containers to adequately maintain the quality of our products.

In the case of HPLC solvents, the most appropriate materials for containers are glass (or steel) since they produce no leaching of UV-absorbing organic impurities into the solvents.

Single-use containers

11, 2,51 and 41 amber glass bottles with GL 45 thread, compatible with most HPLC equipment.41 bottles manufactured in Europe, stronger and more robust than standard American 41 bottles.

Returnable containers

To help minimise laboratory waste, we offer our clients the possibility of purchasing HPLC solvents in returnable steel containers.

7l steel containers

Same GL 45 thread as glass bottles, allowing the use of the same metering units or caps for analytical instruments (HPLC, titrators, etc.). Easy-to-use and equipped with a metal handle and obviously safer than a glass bottle. Space-saver compared to three 2,5l bottles. Suitable for storage of all liquids compatible with steel in any quality.

Blow resistant and equipped with several additional safety components: davy mesh, aeration valve and safety valve cap. In case of fire, flames cannot penetrate the tank, preventing explosion. Specially recommended for the storage of flammable liquids such as hexane, acetone and ether. Once inside company premises, the cap is exchanged for a self-closing steel valve that allows the tank to be emptied in horizontal position. Equipped with metal ring for easier handling and stacking.

185l steel tank

authorised distributors.

1851 returnable steel containers for high consumption levels in preparatory HPLC. Pressurisable to 5 bar, with solvent extraction by positive-pressure dispensing system with nitrogen or other inert gas.

The availability of 4I bottles and returnable containers may vary from country to country. Please consult our

www.scharlau.com • export@scharlau.com

Containers and packaging

Packaging

100% cardboard packaging materials used for both the outer case and the filler, which is recycled cardboard. Biodegradability is the main advantage, although by no means the only one. It is a highly absorbent material, reducing the danger in the event of a liquid spill due to bottle breakage.

All Scharlau containers and packing materials are UN-approved for the storage and transport of dangerous goods.

Symbols and capacity of our main containers

CAPACITY	MATERIAL	SYMBOL
1	Glass	
2,5 l	Glass	
4	Glass	
7	Steel	
25 l	Safety Steel	Ĭ
185 l	Steel	

Accessories

	DESCRIPTION	UNITS	ART. NR.
1	Positive pressure extraction system for 7I steel containers	Unit	028-0EK07S
2	Positive pressure extraction system for steel containers	Unit	649-000006
	(for connection to pipe with inert gas)		
3	Self-closing valve for 25I safety tank	Unit	113 - GR7040
4	25I tank holder	Unit	232-SOPBID
5	25l desktop tank holder	Unit	232-SOPSOB
6	HPLC cap with 2 holes and special Teflon disc for bottles	Unit	033-00TDOS
	of reagents with a GL 45 mouth		
7	Bottle opening wrench	Unit	055-LLAVEF
8	Vent cap w/washer for 25I safety tank	Unit	113 - TAP25S
9	Threaded cap for 25I safety tank	Unit	113-GR7041

Acetic acid glacial

H₃C 'nΗ

Methane carboxylic acid, Methylformic

- acid CH,COOH - M = 60,05 g/mol
- · CAS [64-19-7]
- . EC number: 200-580-7

AC0346 Acetic acid glacial, HPLC grade

CH₃

assay (acidimetric)	min. 99,8 %
identity (IR-spectrum)	passes test
density (20%4*)	1,048 - 1,050
non-volatile matter	max. 0,0003 %
water (K.F.)	max. 0,2 %

•	Solub. in water	(20 °C): miscible
•	Melting point: 1	17 °C

Physical data:

· Boiling point: 117 *C

· Density: 1,05 g/cm³

- · Flash point: 38 °C
- · Ignition temp.: 485 *C · Vapour pressure: (20 °C) 15,4 hPa.
- Refraction index: (20 °C) 1,37

min. transmi

- · Expl. limit (upper): 19,9 Vol%
- · Expl. limit (lower): 4 Vol%
- · pH (50 g/l H,O, 20 °C) 2,5

Toxicological data:

- . LD 50 (oral, rat): 3310 mg/kg
- MAK: 10 ml/m², 25 mg/m²
- · WGK: 1

Safety:

- EC Index no.: 607-002-00-6 · R: 10-35
- · S: 23.2-51-26-36/37/39-45
- · Poison class CH (Swiss): 3

Transport/storage:

51

- ADR: 8 CF1 II UN 2789
- + IMDG: 8 II UN 2789
- + IATA/ICAO: 8 II UN 2789
- + PAX: 809
- · CAO: 813
- + LGK: 3A
- + Disposal: 4
 - Taric code: 2915 21 00 00

min. transmission/max. absorbance in a 1.0 cm cell at			Code	Capacity
wavelength:	T(%)	A (AU)	AC03461000	110
260 nm.	80 %	0,097 AU	AC03462500	2,510
270 nm	95 %	0,022 AU		
280 nm	98 %	0,009 AU		

Microfiltered through membranes of pore diameter 0,22 µm

Acetone

H₃C

Dimethyl ketone, 2-Propanone

C.H.O • M = 58,08 g/mol

• EC number: 200-662-2

. CAS [67-64-1]

Physical data:

- · Density: 0,79 g/cm³
- · Solub. in water (20 °C): miscible
- · Melting point: -95 °C
 - · Boiling point: 56 °C
 - Flash point: < -20 °C
 - · Ignition temp.: 540 °C
- · Vapour pressure: (20 *C) 233 hPa
- Refraction index: (n 20 *C/D) 1,35868
- · Viscosity: (25 °C) 0,31 mPas
- · Dipolar moment: (20 °C) 2,7 Debye
- · Dielectric const.: (25 °C) 20,7
- · Evap. heat: (56 °C) 521 KJ/kg

AC0310 Acetone, Multisolvent® HPLC grade ACS ISO UV-VIS

- Saturation conc.: (20 *C) 533 g/m¹ + R: 11-36-66-67
 - · S 9-16-26
 - · VbF class: B
 - + Poison class CH (Swiss): 5

Xi

Transport/storage:

- ADR: 3 F1 II UN 1090
- + IMDG: 3 II UN 1090
- + IATA/ICAO: 3 II UN 1090
- · PAX: 305
- · CAO: 307
- + LGK: 3 A
- · Disposal: 1

Taric code: 2914 11 00 00

Capacity

110 2.510

410

710 2518

assay (G.C.)	min. 99,8 %	molybdenum (Mo)	max 0,000002 %	Code
identity (IR-spectrum)	passes test	nickel (Ni)	max. 0,000001 %	
density (20%4*)	0,787 - 0,791	silver (Ag)	max 0,000002 %	AC03101000
appearance of solution	passes test	thalium (Th).	max 0,000002 %	AC03102500
colour (Hazen)	max. 10	tin (Sn)	max 0,00001 %	AC03104000
solubility in water	passes test	titanium (Ti)	max. 0,000002 %	
water-insoluble substances	passes test	vanadium (V)	max 0,000002 %	AC0310007E
acidity	max. 0,0002 meg/g	zine (Zn).	max 0,000001 %	AC0310025S
alkalinity	max. 0,0002 meg/g	zirconium (Zr).	max. 0,000002 %	
chlorides (CI)	max 0,00001 %	aldehydes (as HCHO)	max. 0,002 %	
nitrates (NOs)	max 0,00001 %	cyclohexane (G.C.)	max. 0,1 %	
phosphates (POa)	max. 0,00001 %	diacetone (G.C.)	max. 0,02 %	
sulfates (SO4)	max 0,00001 %	ethanol (G.C.)	max 0,01 %	
aluminium (Al).	max. 0,00001 %	methanol (G.C.)	max. 0,05 %	
antimony (Sb)	max 0,000002 %	2-propanol (G.C.)	max. 0,05 %	
arsenic (As)	max. 0,000002 %	KMnO4 red. matter (as O)	max. 0,0001 %	
barium (Ba)	max 0,000001 %	non-volatile matter	max 0,0002 %	
beryllium (Be)	max 0,000002 %	water (K.F.)	max. 0,2 %	
bismuth (Bi)	max 0,000002 %			
boron (B)	max. 0,000002 %	liquid chromatography suitability		
cadmium (Cd)	max 0,000001 %	absorbance	passes test	
calcium (Ca)	max. 0,00003 %		* - 13 ISB BY 01705 V	
chromium (Cr)	max 0,000002 %	min. transmission/max. absorbance		
cobalt (Co)	max. 0,000002 %	in a 1,0 cm cell at		
copper (Cu)	max 0,000001 %	wavelength:	T(%) A (AU)	
gallium (Ga)	max. 0,000002 %	330 nm	10 % 1,000 AU	
germanium (Ge)	max 0,000002 %	335 nm	50 % 0.301 AU	
gold (Au)	max. 0,000002 %	337 nm	80 % 0,097 AU	
indium (in).	max 0,000002 %	342 nm	90 % 0.046 AU	
iron (Fe)	max. 0,000002 %	350 nm.	98 % 0.009 AU	
lead (Pb)	max 0,000001 %			
Ithium (Li).	max. 0,000005 %	Microfiltered through membranes		
magnesium (Mg)	max 0,00001 %	of pore diameter 0,22 µm		
manganese (Mn).	max 0,000001 %			

 Expl. limit (upper): 13 Vol% · Expl. limit (lower): 2,6 Vol% + pH (395 g/l H₁O, 20 °C) 5 - 6

Toxicological data:

- ·WGK: 1

+ EC Index no.: 605-001-00-8

+ LD 50 (oral, rat): 5800 mg/kg MAK: 500 ml/m², 1200 mg/m²

Safety:

·R: 11-20/21/22-36

Transport/storage: • ADR: 3 F1 II UN 1648

+ IMDG: 3 II UN 1648

+ IATA/ICAO: 3 II UN 1648

+ Poison class CH (Swiss): 2

· S: 16-36/37-46

· VbF class: B

· PAX: 305

+ CAO: 307

+ LGK: 3 A

· Disposal: 1

Acetonitrile

Methyl cyanide, Cyanomethane

· CH,CN · M = 41,05 g/mol

• EC number: 200-835-2

· CAS [75-05-8]

Physical data:

- Density: 0,786 g/cm¹
- · Solub. in water (20 °C): miscible
- Melting point: -45,7 *C
- Boiling point: 81,6 °C
- Flash point: 5 °C
- Ignition temp.: 524 °C
 Vapour pressure: (20 °C) 97 hPa
- Refraction index: (n 20 °C) 1,3442
- Viscosity: (20 °C) 0,39 mPas
- · Dipolar moment: (20 °C) 3,44 Debye
- Dielectric const.: (20 *C) 37.5

• Evap. heat: (81 *C) 833 KJ/kg

- Saturation conc.: (20 °C) 163 g/m²
- Expl. limit (upper): 17 Vol%
- Expl. limit (lower): 3,0 Vol%

Toxicological data:

- LD 50 (oral, rat): 2730 3800 mg/kg
 MAK: 20 ml/m³, 34 mg/m³
- •WGK: 2

Safety:

• EC Index no.: 608-001-00-3

Tario code: 2926 90 95 90

Taric code: 2926 90 95 90

Tanic code: 2926 90 95 90

AC0333	Acetonitrile,	Multisolvent®	HPLC grade	ACS	UV-VIS

assay (G.C.). identity (IR-spectrum). density (20%4*). appearance colour (Hazen). acidity. aikainity. cyanides (CN). aluminium (Al). barium (Ba). boron (B).	min. 99,8 % passes test 0,779 - 0,783 clear max. 10 max. 0,0002 meg/g max. 0,0001 meg/g max. 0,0001 % max. 0,00001 % max. 0,000001 %	tin (Sn) zinc (Zn) non-volatile matter water (K.F.) liquid chromatography suitability absorbance gradient elution min. transmission/max. absorbance in a 1,0 cm cell at	max. 0,00001 % max. 0,000001 % max. 0,0003 % max. 0,03 % passes test passes test	Code AC03331000 AC03332500 AC03334000 AC0333007E AC03330258	Capacity 110 2,510 410 710 251
cadmium (Cd)	max. 0,000001 %	wavelength:	T(%) A (AU)		
calcium (Ca)	max. 0,00003 %	190 nm	10 % 1,000 AU		
chromium (Cr)	max. 0,000002 %	195 nm	50 % 0,301 AU		
cobalt (Co)	max. 0,000002 %	200 nm	80 % 0,097 AU		
copper (Cu)	max. 0,000002 %	215 nm	90 % 0,046 AU		
iron (Fe)	max. 0,000002 %	230 nm	98 % 0,009 AU		
lead (Pb)	max 0,00001 %				
magnesium (Mg)	max. 0,00001 %	Microfiltered through membranes			
manganese (Mn)	max. 0,000001 %	of pore diameter 0,22 µm			
nickel (Ni)	max. 0,000002 %				

NEW AC0371 Acetonitrile, LC-MS

assay (G.C.)	min. 99,9 % passes test 0,779 - 0,783 max. 0,0002 meg/g max. 0,00005 % max. 0,00001 %	non-volatile matter water (K.F.) suitability for use in LC-MS min. transmission/max, absorbance in a 1.0 cm cell at	max. 0,0001 % max. 0,01 % passes test	Code AC03711000 AC03712500	Capacity 1 I 0 2,5 I 0
cadmium (Cd)	max. 0.000005 %	wavelength.	T(%) A (AU)		
calcium (Ca)	max. 0,00001 %	195 nm	80 % 0.097 AU		
chromium (Cr)	max. 0,000002 %	200 nm	95 % 0,022 AU		
cobalt (Co)	max. 0,000002 %	210 nm	97 % 0,013 AU		
copper (Cu)	max. 0,000002 %	220 nm	98 % 0,009 AU		
iron (Fe)	max 0,00001 %				
lead (Pb)	max. 0,00001 %	gradient grade (210 nm)			
magnesium (Mg)	max. 0,00001 %	maximum background absorbance	max 0,012 AU		
manganese (Mn)	max. 0,000002 %	maximum peak absorbance	max. 0,001 AU		
nickel (Ni)	max 0,000002 %	gradient grade (254 nm)			
potassium (K)	max. 0,00001 %	maximum peak absorbance	max. 0,0002 AU		
silver (Ag)	max. 0,00001 %				
sodium (Na)	max. 0,00001 %	microfiltered through membranes			
tin (Sn)	max. 0,00001 %	of pore diameter 0,22 µm			
zinc (Zn)	max. 0,00001 %				

AC0335 Acetonitrile, fluorescence HPLC grade

Addada Adetaintine hoorea	comeerin co grade				
assay (G.C.) identity (IR-spectrum) density (201/4*) acidity.	min. 99,9 % passes test 0,779 - 0,783 max. 0,0002 meg/g	gradient grade (210 nm) maximum background absorbance maximum peak absorbance	0,01 AU 0,0015 AU	Code AC03351000 AC03352500	Capacity 110 2,510
alkalinty	max. 0,0002 meg/g	fluorescence analysis:			
non-volatile matter	max. 0,0001 %	maximum absorbance: 1 ppb as quinine			
water (K.F.)	max. 0,02 %	(in 0,1 N sulfuric acid), for the spectra recorded at the following conditions:			
min. transmission/max. absorbance		EX wavelength between 200 and 450			
in a 1,0 cm cell at		EM wavelength between 250 and 550			
wavelength:	T(%) A (AU)				
195 nm	83 % 0,081 AU	Microfiltered through membranes			
200 nm	95 % 0,018 AU	of pore diameter 0,22 µm			
215 nm	98 % 0,009 AU				
230 nm	99 % 0,004 AU				

HPLC **Solvents and Reagents**

AC0331 Acetonitrile, suprag	radient HPLC grad	e			Taric code: 2920	
assay (G.C.)		min. transmission/max. absorbance			Code	Capacit
identity (IR-spectrum)		in a 1,0 cm cell at				110
density (20%4*)	0,779 - 0,783	wavelength:		A (AU)	AC03311000	
acidity		195 nm		0,097 AU	AC03312500	2,510
alkalinity		200 nm		0,022 AU	AC03314000	410
water (K.F.)		210 nm.		0.009 AU	AC0331007E	710
mana per j	max u,ur si	2.00 101	00 /0	0,000 110	AC03310258	2518
gradient grade (210 nm)		Microfiltered through membranes				
maximum background absorbance: maximum peak absorbance:	max. 0,01 AU	of pore diameter 0,22 µm				
maximum peak absorbance.	max. 0,0015 AU					
AC0329 Acetonitrile, gradier	nt 240nm/ far UV H	PLC grade			Taric code: 2920	\$ 90 95 90
assay (G.C.)		min. transmission/max. absorbance			Code	Capacit
identity (IR-spectrum)		in a 1,0 cm cell at	Wines.		AC03291000	110
density (20%4*)	0,779-0,783	wavelength: 200 nm		A (AU) 0.048 AU		2,510
acidity		205 nm.		0.036 AU	AC03292500	-
non-volatile matter	max. 0,0002 medgg max. 0,0002 %	210 nm		0.022 AU	AC03294000	410
water (K.F.)		220 nm		0.009 AU	AC0329007E	710
water (PLP-J.	111dA. 0,02.39	220 1111	00.10	0,000 H0	AC0329025S	2518
gradient grade (240 nm)		Microfiltered through membranes				
maximum beckground absorbance:	0,01 AU	of pore diameter 0,22 µm				
maximum peak absorbance.	0,0015 AU					
AC0340 Acetonitrile, isocrat	ic HPLC grade				Tarle code: 292	88 90 95 9C
assay (G.C.).	min. 99.8 %	min. transmission/max. absorbance				
identity (IR-spectrum)		in a 1.0 cm cell at			Code	Capac
density (20%4*)		wavelength:	T(%)	A (AU)	AC03401000	110
acidity		200 nm			AC03402500	2.510
alkalinity		220 nm	90 %	0.046 AU	AC03404000	410
non-volatile matter	max. 0,0003 %	240 nm	98 %	UA 600.0		
water (K.F.)	max. 0,03 %				AC0340007E	710
		Microfiltered through membranes of pore diameter 0.22 µm			AC0340025S	251
		Microfiltered through membranes of pore diameter 0,22 µm			AC0340025S	251
		-			AC03400258	251
Acetonitrile with 0,1%	acetic acid	-		ð ^r	AC03400255	2518
Safety:	Transport/storage:	-		ð,	AC03400255	2516
Safety: • R: 11-20/21/22-36	Transport/storage: • ADR: 3 F1 II UN 1993	-		ð,	AC03400255	2518
Safety: • R: 11-20/21/22-36	Transport/storage:	of pore diameter 0,22 µm		۴ ا	AC03400255	2518
Safety: • R: 11-20/21/22-36 • S: 16-36/37-46	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 199	of pore diameter 0,22 µm		ð,	AC03400255	
Safety: R: 11-20/21/22-36 8: 16-36/37-48 AC0374 Acetonitrile with 0,	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 199 1% acetic acid, LC	of pore diameter 0,22 µm		¢.	Xn Tario code: 382	2 00 00 00
Safety: R: 11-20/21/22-36 8: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (w/)	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 199 1% acetic acid, LC 0,093 - 0,107 %	of pore diameter 0,22 µm 93		۴ ا	Xn	2 00 00 00 Capacity
Safety: R: 11-20/21/22-36 • 8: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (w/) calcium (Ca).	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 199 1% acetic acid , LC 0,093 - 0,107 % max. 0,00005 %	of pore diameter 0,22 µm 23 MS min. transmission/max. absorbance	T(%)	A (AU)	Xn Tario code: 382	2 00 00 00
Safety: • R: 11-20/21/22-36 • S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca)	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 199 1% acetic acid , LC 0.093 - 0.107 % max. 0.00005 % max. 0.00005 %	of pore diameter 0,22 µm 23 MS min. transmission/max: absorbance in a 1,0 om cell at			Xn Tario code: 382. Code	coo oo oo Capacit 110
Safety: • R: 11-20/21/22-36 • S: 16-36/37-46 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca)	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 199 1% acetic acid , LC 0.093 - 0.107 % max. 0.00005 % max. 0.00005 %	of pore diameter 0,22 µm 23 -MS min. transmission/max. absorbance in a 1,0 om cell at wavelength:	20 %	A (AU)	Tario code: 3822 Code AC03741000	2000000 Capacit 110
Safety: • R: 11-20/21/22-36 • S: 16-36/37-46 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca). magnesium (Mg). potassium (K). sodium (Na).	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAC: 3 II UN 1993 1% acetic acid, LC 0,093 - 0,107 % max. 0,00005 % max. 0,00005 % max. 0,00005 % max. 0,00005 %	of pore diameter 0,22 µm a3 -MS min. transmission/max: absorbance in a 1,0 om cell at wavelength: 210 nm.	20 % 50 %	A (AU) 0,699 AU	Tario code: 3822 Code AC03741000	2 00 00 00 Capacit
Acetonitrile with 0,1% Safety: • R: 11-20/21/22-36 • S: 16-36/37-46 AC0374 Acetonitrile with 0, acetic acid content (w/). calcium (Ca). magnesium (Mg). potassium (K). sodium (Na). suitability for use in LC-MS.	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAC: 3 II UN 1993 1% acetic acid, LC 0,093 - 0,107 % max. 0,00005 % max. 0,00005 % max. 0,00005 % max. 0,00005 %	of pore diameter 0,22 µm 23 24 254 nm. 254 nm.	20 % 50 %	A (AU) 0,699 AU 0,301 AU	Tario code: 3822 Code AC03741000	coo oo oo Capacity 110
Safety: • R: 11-20/21/22-36 • S: 16-36/37-46 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca). magnesium (Mg). potassium (K). sodium (Na).	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAC: 3 II UN 1993 1% acetic acid, LC 0,093 - 0,107 % max. 0,00005 % max. 0,00005 % max. 0,00005 % max. 0,00005 %	of pore diameter 0,22 µm a3 >MS min. transmission/max. absorbance in a 1,0 om cell at wavelength: 210 nm	20 % 50 %	A (AU) 0,699 AU 0,301 AU	Tario code: 3822 Code AC03741000	coo oo oo Capacity 110
Safety: PR: 11-20/21/22-36 • S: 16-36/37-46 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca). magnesium (K), sodium (Na). suitability for use in LC-MS.	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 199 1% acetic acid , LC 0,093 - 0,107 % max 0,00005 % max 0,00005 % max 0,00005 % max 0,00005 % max 0,00002 % passes test	of pore diameter 0,22 µm 23 -MS min. transmission/max. absorbance in a 1,0 om cell at wavelength: 210 nm	20 % 50 %	A (AU) 0,699 AU 0,301 AU	Tario code: 3822 Code AC03741000	coo oo oo Capacit 110
Safety: • R: 11-20/21/22-36 • S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (w/y)	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993 1/% acetic acid, LC 0,093 - 0,107 % max 0,00005 % max 0,00005 % max 0,00005 % max 0,00005 % passes test 5 formic acid Transport/storage:	of pore diameter 0,22 µm 23 -MS min. transmission/max. absorbance in a 1,0 om cell at wavelength: 210 nm	20 % 50 %	A (AU) 0,699 AU 0,301 AU	Tario code: 3822 Code AC03741000	coo oo oo Capacit 110
Safety: •R: 11-20/21/22-36 •S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca)	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993 1/% acetic acid, LC 0,093 - 0,107 % max 0,00005 % max 0,00005 % max 0,00005 % max 0,00005 % max 0,00002 % passes test	of pore diameter 0,22 µm 23 -MS min. transmission/max. absorbance in a 1,0 om cell at wavelength: 210 nm	20 % 50 %	A (AU) 0,699 AU 0,301 AU	Tario code: 3822 Code AC03741000	coo oo oo Capacit 110
Safety: • R: 11-20/21/22-36 • S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (w/v) calcium (Ca). magnesium (Mg). potassium (K). sodium (Na). suitability for use in LC-MS. Acetonitrile with 0,1%	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 1/% acetic acid, LC 0,093 - 0,107 % max: 0,00005 % max: 0,00005 % max: 0,00005 % max: 0,00005 % max: 0,00002 % passes test 5 formic acid Transport/storage: • ADR: 3 F1 II UN 1993	of pore diameter 0,22 µm	20 % 50 %	A (AU) 0,699 AU 0,301 AU	Tario code: 3822 Code AC03741000	coo oo oo Capacit 110
Safety: •R: 11-20/21/22-36 •S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca). magnesium (Mg). potassium (Na). sodium (Na). suitability for use in LC-MS. Acetonitrile with 0,1% Safety: •R: 11-20/21/22-36 •S: 16-36/37-46	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 1ATA/ICAO: 3 II UN 1993 1% acetic acid, LC 0,093 - 0,107 % max: 0,00005 % max: 0,00005 % max: 0,00005 % max: 0,00002 % passes test 5 formic acid Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993	of pore diameter 0,22 µm	20 % 50 %	A (AU) 0,699 AU 0,301 AU	Xn Tario code: 3823 Code AC03741000 AC03742500	200 <i>0</i> 000 Capacit 110 2,510
Safety: R: 11-20/21/22-36 S: 16-36/37-46 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca). magnesium (Mg). potassium (K). sodium (Na). suitability for use in LC-MB. Acetonitrile with 0,1% Safety: R: 11-20/21/22-36 S: 16-36/37-48 AC0373 Acetonitrile with 0,	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993 1/% acetic acid, LC 0,093 - 0,107 % max: 0,00005 % max: 0,00005 % max: 0,00005 % max: 0,00005 % max: 0,00002 % passes test 5 formic acid Transport/storage: • ADR: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993	of pore diameter 0,22 µm	20 % 50 %	A (AU) 0,699 AU 0,301 AU	Tario code: 3822 Code AC03741000	Capacit 110 2,510
Safety: R: 11-20/21/22-36 R: 11-20/21/22-36 S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca). magnesium (Mg). potassium (Mg). potassium (K). sodium (Na). suitability for use in LC-MB. Safety: R: 11-20/21/22-36 S: 16-36/37-46 AC0373 Acetonitrile with 0, formic acid content (v/v).	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993 1/% acetic acid, LC 0,093 - 0,107 % max 0,00005 % max 0,00005 % max 0,00005 % max 0,0002 % passes test 5 formic acid Transport/storage: • ADR: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993	of pore diameter 0,22 µm	20 % 50 %	A (AU) 0,699 AU 0,301 AU	Xn Tario code: 3823 Code AC03741000 AC03742500	2 00 00 00 Capacit 1 I 0 2,5 I 0
Safety: R: 11-20/21/22-36 -8: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca). magnesium (Mg). potassium (Mg). potassium (Ma). sodium (Na). suitability for use in LC-MS Acetonitrile with 0,1% Safety: •R: 11-20/21/22-36 •S: 16-36/37-46 AC0373 Acetonitrile with 0, formic acid content (wV). calcium (Ca).	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 1ATA/ICAO: 3 II UN 1993 1% acetic acid, LC 0,093 - 0,107 % max 0,00005 % max 0,00005 % max 0,00005 % max 0,0002 % passes test 5 formic acid Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993	as and the second secon	20 % 50 % 90 %	A (AU) 0,659 AU 0,301 AU 0,046 AU	Xn Tanio code: 3822 Code AC03741000 AC03742500 Xn Tanio code: 3822 Code	2 00 00 00 Capacit 1 1 0 2,5 1 0
Safety: •R: 11-20/21/22-36 •S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (v/v) calcium (Ca)	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 1ATA/ICAO: 3 II UN 1993 1% acetic acid, LC 0,093 - 0,107 % max: 0,00005 % max: 0,00005 % max: 0,0002 % passes test 5 formic acid Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 II UN 1993 • IATA/ICAO: 3 II UN 1993	of pore diameter 0,22 µm	20 % 50 % 90 %	A (AU) 0,699 AU 0,301 AU 0,046 AU F	Xn Taric code: 3822 Code AC03741000 AC03742500 Xn Taric code: 3822 Code AC03731000	200 00 00 Capacit 110 2,510 200 00 00 Capacit 110
Safety: • R: 11-20/21/22-36 • R: 11-20/21/22-36 • S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (w/) calcium (Ca)	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 1ATA/ICAO: 3 II UN 1993 1% acetic acid, LC 0,093 - 0,107 % max: 0,00005 % max: 0,00005 % max: 0,0002 % passes test 5 formic acid Transport/storage: • ADR: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993	of pore diameter 0,22 µm 23 MS min. transmission/max: absorbance in a 1,0 om cell at wavelength: 210 nm. 230 nm. 254 nm. microfiltered through membranes of pore diameter 0,22 µm 23 24 25 min. transmission/max: absorbance in a 1,0 om cell at wavelength: 210 nm.	20 % 50 % 90 %	A (AU) 0,699 AU 0,301 AU 0,046 AU F	Xn Tanio code: 3822 Code AC03741000 AC03742500 Xn Tanio code: 3822 Code	200 00 00 Capacit 110 2,510 200 00 00 Capacit 110
Safety: • R: 11-20/21/22-36 • R: 11-20/21/22-36 • S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (w/) calcium (Ca). magnesium (Mg) potassium (Ng). · · · · · · · · · · · · · · · · · · ·	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 • IAT	of pore diameter 0,22 µm 23 -MS min. transmission/max: absorbance in a 1,0 om cell at wavelength: 210 nm. 230 nm. 254 nm. microfitered through membranes of pore diameter 0,22 µm 23 -MS min. transmission/max: absorbance in a 1,0 om cell at wavelength: 210 nm. 230 nm	20% 50% 90% 15%	A (AU) 0,699 AU 0,301 AU 0,046 AU F A (AU) 1,301 AU 0,824 AU	Xn Taric code: 3822 Code AC03741000 AC03742500 Xn Taric code: 3822 Code AC03731000	2 00 00 00 Capacit 110 2,510
Safety: • R: 11-20/21/22-36 • R: 11-20/21/22-36 • S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (w/) calcium (Ca)	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 • IAT	of pore diameter 0,22 µm 23 MS min. transmission/max: absorbance in a 1,0 om cell at wavelength: 210 nm. 230 nm. 254 nm. microfiltered through membranes of pore diameter 0,22 µm 23 24 25 min. transmission/max: absorbance in a 1,0 om cell at wavelength: 210 nm.	20% 50% 90% 15%	A (AU) 0,699 AU 0,301 AU 0,046 AU F	Xn Taric code: 3822 Code AC03741000 AC03742500 Xn Taric code: 3822 Code AC03731000	200 00 00 Capacit 110 2,510 200 00 00 Capacit 110
Safety: • R: 11-20/21/22-36 • R: 11-20/21/22-36 • S: 16-36/37-48 AC0374 Acetonitrile with 0, acetic acid content (w/) calcium (Ca). magnesium (Mg) potassium (Ng). · · · · · · · · · · · · · · · · · · ·	Transport/storage: • ADR: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 F1 II UN 1993 • IMDG: 3 F1 II UN 1993 • IATA/ICAO: 3 II UN 1993 • IAT	of pore diameter 0,22 µm 23 -MS min. transmission/max: absorbance in a 1,0 om cell at wavelength: 210 nm. 230 nm. 254 nm. microfitered through membranes of pore diameter 0,22 µm 23 -MS min. transmission/max: absorbance in a 1,0 om cell at wavelength: 210 nm. 230 nm	20% 50% 90% 15%	A (AU) 0,699 AU 0,301 AU 0,046 AU F A (AU) 1,301 AU 0,824 AU	Xn Taric code: 3822 Code AC03741000 AC03742500 Xn Taric code: 3822 Code AC03731000	200 00 00 Capacit 110 2,510

Acetonitrile with 0,1% trifluoroacetic acid

Safety:

Transport/storage:

- ·R: 11-20/21/22-38 · S: 16-36/37-46
- · ADR: 3 F1 II UN 1993
- IMDG: 3 II UN 1993
 - · IATA/ICAO: 3 II UN 1993

NEW AC0372 Acetonitrile with 0,1% trifluoroacetic acid, LC-MS

trifluoroacetic acid content (w/v) 0.093 - 0.107 % calcium (Ca). magnesium (7 potassium (K) sodium (Na)... suitability for u

min. transmission/max. absorbance in a 1.0 cm cell at		
wavelength:	T(%)	A
210 nm	30 %	0.5
230 nm	50 %	0.3
254 nm	90.%	0,0
254 nm	90 %	0,

microfiltered through membranes

Taric code 3822 00 00 00

c acid content (w/v)	0,093 - 0,107 % max. 0,00005 %	min. transmission/max. absorbance in a 1,0 cm cell at			Code	Capacity
(Mg)	max 0,00005 %	wavelength:	T(%)	A (AU)	AC03721000	110
0	max. 0,00005 %	210 nm.	30.96	0,523 AU	AC03722500	2,510
	max. 0,0002 %	230 nm.	50 %	0,301 AU		
use in LC-MS	passes test	254 nm.	90 %	0,046 AU		
		and a second state of the				

of pore diameter 0,22 µm

Ammonium acetate

- Acetic acid ammonium salt
- CH₂COONH₄ + M = 77,08 g/mol · CAS [531-61-8]
- EC number: 211-162-9
- · Spec. density: 1,17 g/cm³ Bulk density: - 410 kg/m²
- · Solub. in water (20 °C): soluble

Physical data:

- · Melting point: 114 °C
- · Flash point: 135 °C pH (50 g/i H,O, 20 °C) ~ 6,7 - 7,3

Toxicological data: • WGK: 1

·LGK: 10-13 · Disposal: 14

Safety:

· Poison class CH (Swiss): 5

Transport/storage:

Taric code: 2915 29 00 90

AM0255	Ammonium	acetate.	HPLC grade
--------	----------	----------	------------

assay (acidimetric)	min. 98 %
identity (IR-spectrum)	passes test
insoluble matter	passes test
pH (5%, HzO).	6,5-7,5
chlorides (CI)	max. 0,0005 %
heavy metals (as Pb)	max. 0,0001 %
iron (Fe)	max. 0,0001 %

maximum absorbance of an aqueous solution (10%) in a 1,0 cm cell at	
wavelength:	absorban
250 nm	0.05 AU
260 nm.	0.04 AU
270 nm	0.03 AU
280 nm	0.02 AU

nce:

T(%) A (AU)

96 % 0.018 AU 98 % 0,009 AU

Code Capacity AM02550250 250 g () 1 kg 🖯 AM02551000

Ammonium acetate, solution 10 mmol/l in water

NEWAM0262	Ammonium acetate,	solution 10 mmol/l	in water, buffered at pH = 7, LC	-MS	Taric code: 2915	5 29 00 90
	oetate content (mmol/l)		suitability for use in LC- MS	passes test	Code	Capacity
aluminium (A	.	max. 0,000005 %	min. transmission/max. absorbance		AM02621000	110
calcium (Ca).		max. 0,000005 %	in a 1,0 cm cell at			

wavelength:

254 nm.

280 nm.

lead (Pb)..

aummum pay.	TINGK.	0,000000 18
calcium (Ca)	max.	0,000005 %
iron (Fe)	max.	0,000005 %
magnesium (Mg)	max.	0,000005 %
potassium (K)	max.	0,000005 %
sodium (Na)	max.	0,000005 %

Ammonium carbonate

Salt of hartshorn

· CAS [506-87-6]

• EC number: 208-58-0

· (NH,),CO,

Physical data:

- · Solub. in water (20 °C): soluble
- · Melting point: 58 *C (decomposes)
- pH (100 g/i H,O, 20 °C) 9,4

Toxicological data:

. LD 50 (oral, rat): 1975 mg/kg

max, 0.001 %

- · Poison class CH (Swiss): 4

Transport/storage:

·LGK: 10-13

- Tanio code: 2835 10 00 00
- Code Capacity AM02670250 250 g ()

assay (acidimetric, NHs)	min. 30 %	
klentity	passes test	
insoluble matter	passes test	
chlorides (CI)	max. 0,0005 %	
sulfates (SO4)	max. 0,005 %	
arsenic (As).	max. 0,0003 %	
copper (Cu)	max. 0,0025 %	
heavy metals (as Pb)	max. 0,001 %	
iron (Fe)	max. 0,0005 %	

AM0267 Ammonium carbonate, HPLC grade

maximum absorbance of an aqueous solution (10%) in a 1,0 cm cell at	
wavelength:	absorbance:
240 nm.	0,1 AU
250 nm	0.04 AU
260 nm	0,02 AU
280 nm.	0,01 AU

· WGK:1

- - X Xn
 - Safety:
 - ·R: 22
 - 15:45

Benzene

Cyclohesatriene

· CAS [71-43-2]

C,H, • M = 78,11 g/mol

• EC number: 200-753-7

- Physical data:
- · Density: 0,88 g/cm² · Solub. in water (20 °C): 1,77 g/l
- Melting point: 5,5 °C
- · Boiling point: 80,1 *C Flash point -11 °C
- · Ignition temp.: 555 °C
- Vapour pressure: (20 °C) 101 hPa
- · Refraction index: (n 20 °C/D) 1,5011
- · Viscosity: (20 °C) 0,66 mPas
- Dielectric const.: (20 °C) 2,3
- Evap. heat: (80 °C) 550 KJ/kg

· Saturation conc .: (20 °C) 319 g/m²

zine (Zn).

뇄

- · VbF class: Al
- + Poison class CH (Swiss): 1*

Transport/storage:

- ADR: 3 F1 II UN 1114
- + IMDG: 3 II UN 1114
- + IATA/ICAO: 3 II UN 1114
- + PAX: 305 · CAO: 307
- + LGK: 3 A
- + Disposal: 9

Code

BE00411000

BE00412500

BE00414000

BE0041007E

BE0041025S

BE0041 Benzene, Multisolvent® HPLC grade ACS ISO UV-VIS

assay (G.C.)	min. 99,8 %
identity (IR-spectrum)	passes test
density (20%4*)	
appearance	
colour (Hazen)	max 10
melting point	
acidity	
alkalinity	max 0,00005 meg/g
aluminium (Al)	max. 0,00001 %
barium (Ba).	
boron (B)	max 0,000002 %
cadmium (Cd)	
calcium (Ca)	max. 0,00003 %
chromium (Cr)	
cobalt (Co)	max 0,000002 %
copper (Cu)	max 0,000002 %
iron (Fe)	max 0,000002 %
lead (Pb)	max 0,00001 %
magnesium (Mg)	
manganese (Mn)	
nickel (Ni)	
tin (Sn)	

sulphur compounds (as S)	max. I	0,0005 %	
tiophene	max. I	0,0001 %	
substances darkened by H ₂ SO ₄	passe	is test	
non-volatile matter	max. I	0,0002 %	
water (K.F.).	max. I	0,02 %	
liquid chromatography suitability			
absorbance.	passe	s test	
min. transmission/max. absorbance			
in a 1,0 cm cell at			
wavelength:	T(%)	A (AU)	
280 nm	25 %	0,602 AU	
290 nm	80 %	0.097 AU	
320 nm	95 %	0,022 AU	
300 nm	90 %	0,046 AU	
340 nm	98 %	0,009 AU	

· Expl. limit (upper): 8,0 Vol%

· Expl. limit (lower): 1,4 Vol%

. LD 50 (oral, rat): 930 mg/kg

• EC Index no.: 601-020-00-8

·R: 45-46-11-36/38-E48/23/24/25-E65

max 0.000001 %

Toxicological data:

·WGK: 3

Safety:

+S: 53-45-60-61

Microfiltered through membranes of pore diameter 0,22 µm

1-Butane sulfonic acid, sodium salt

Sodium 1-buty/sulfonate

 C,H,NaO,S • M = 160,17 g/mol · CAS [2388-54-1]

• EC number: 219-201-1

Physical data:

· Solub. in water (20 °C): soluble · Melting point: > 310 °C

Toxicological data: + WGK: 3

Transport/storage:

Taric code: 2904 10 00 90

· LGK: 10-13

AC0601 1-Butane sulfonic acid, sodium salt, HPLC grade

assay (acidimetric). Insoluble matter	maximum absorbance of an aqueous solution (10%) in a 1,0 cm cell at wavelength: 210 nm. 220 nm. 230 nm. 280 nm.		Code AC06010025	Capacity 25 g ()
	200 nm.	0,02 40		

Tario code: 2902 20 00 00

Capacity

2,510 410

110

710

2518

1-Butanol

CH₂

n-Butyl alcohol, Propylcarbinol

- C,H,O M = 74,12 g/mol
- · CAS [71-36-3]
- EC number: 200-761-6

Physical data:

- · Density: 0,81 g/cm³
- · Solub. in water (20 °C): 79 g/l
- · Melting point: -89,5 °C
- · Boiling point: 118 *C
- · Flash point: 30 °C Ignition temp.: 340 ℃
- · Vapour pressure: (20 °C) 6,7 hPa
- Refraction index: (n 20 °C/D) 1,3993
- · Viscosity: (20 °C) 2,95 mPas
- Dipolar moment: (20 °C) 1,66 Debye
- Dielectric const.: (20 °C) 17,8

Saturation conc.: (20 °C) 20 g/m²

- · Expl. limit (upper): 11,3 Vol%
- · Expl. limit (lower): 1,4 Vol%
- pH (70 g/1 H,O, 20 °C) 7

Toxicological data:

- · LD 50 (oral, rat): 790 mg/kg
- MAK: 100 ml/m², 310 mg/m²
- WGK: 1

Safety:

• EC Index no.: 603-004-00-6 [1]

x

- +R: 10-22-37/38-41-67
- · S: 7/9-13-26-37/39-46
- · VbF class: All
- · Poison class CH (Swiss): 4

Transport/storage:

- ADR: 3 F1 III UN 1120
- . IMDG: 3 III UN 1120
- + IATA/ICAO: 3 III UN 1120
- + PAX: 309 . CAO: 310
- . LGK: 3 A
- + Disposal: 1

AL0175 1-Butanol, HPLC grade

assay (G.C.)	min. 99,7 %
identity (IR-spectrum)	passes test
density (20%4*)	0,809 - 0,810
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
non-volatile matter	max. 0,0003 %
water (K.F.).	max. 0,1 %

min. transmission/max. absorbance		
in a 1,0 cm cell at		
wavelength:	T(%)	A (AU)
210 nm.	20 %	0,699 /
220 nm	50 %	0,301 A
245 nm.	90 %	0.046 /

Microfiltered through membranes of pore diameter 0,22 µm

1	A (ALI)	AL
	0.699 AU	AL
6	0,301 AU	
6	0.046 AU	

Code	Capacity
AL01751000	110
AL01752500	2.510

Tanic code: 2905 13 00 00

tert-Buty	1	methy	1	ether
LOIL DUL	/ •	moury		CUICI

H₃C, H₃C CH₃

identity (IR-spectrum)

water (K.F.)

density (20%4*)

ME0552 tert-Butyl methyl ether, HPLC grade

Methyl tert-butyl ether, M7BE C₂H₂O • M = 88,15 g/mol

· CAS [1634-04-4]

assay (G.C.)

non-volatile matter...

acidity.

alkalinity

- EC number: 216-653-1

Physical data: · Density: 0,74 g/cm³

- Solub. in water (10 °C): ~ 26 g/l
- · Melting point -108,6 °C
- · Boiling point: 55 °C
- Flash point -28 *C

min. 99,8 %

passes test

0,740-0,742

max 0,0002 meg/g

max. 0,0002 meg/g

max 0,0003 %

max. 0,02 %

- · Ignition temp.: 460 °C
- Vapour pressure: (20 °C) 268 hPa
- · Viscosity: (20 °C) 0,27 mPas
- Evap. heat: (55 °C) 342 KJ/kg
- · Expl. limit (upper): 8,4 Vol%
- · Expl. limit (lower): 1,65 Vol%

Toxicological data:

- ·R: 11-66

۵

Transport/storage:

- + ADR: 3 F1 II UN 2398 IMDG: 3 II UN 2398
- · IATA/ICAO: 3 II UN 2398
- + PAX: 305
- + CAO: 307
- + LGK: 3 A
- · Disposal: 1

Tario code: 2909 19 00 90

		Code	Capacity
T(%)	A (ALI)	ME05521000	110
50 %	0,301 AU	ME05522500	2,510
80 %	0,097 AU	ME0552007E	710
98 %	0,009 AU	HILLOUGH DOT L	110

Microfiltered through membranes of pore diameter 0,22 µm

min. transmission/max. absorbance

in a 1,0 cm cell at

wavelength

240 nm.....

255 nm.....

280 nm.

- . LD 50 (oral, rat): 3870 mg/kg
- MAK: 50 mi/m², 180 mg/m³
- · WGK: 1

Safety:

- · 8: 16-23.2-51-29-33
- · VbF class: Al

Cyclohexane

Hexahydrobenzene, Hexamethylene, Naphthene

- C,H, M = 84,16 g/mol
- · CAS [110-82-7]
- . EC number: 203-806-2

Physical data:

- · Density: 0,78 g/cm³
- · Solub. in water (20 °C): 55 mg/l
- · Melting point: 6 *C
- Boiling paint: 80,7 81 °C · Flash point: -18 °C
- · Ignition temp.: 260 *C
- · Vapour pressure: (20 °C) 103 hPa
- Refraction index: (n 20 °C/D) 1,4264
- · Viscosity: (kinetic, 20 °C) 1,26 mm²/s
- Dielectric const.: (20 °C) 2,0
- · Evap. heat: (81 °C) 389 KJ/kg

- Saturation conc.: (20 °C) 357 g/m²
- · Expl. limit (upper): 8.3 Vol%
- · Expl. limit (lower): 1,2 Vol%

Toxicological data:

- . LD 50 (oral, rat): 12705 mg/kg
- MAK: 200 ml/m², 700 mg/m²
- · WGK: 1

Safety:

- . EC Index no.: 601-017-00-1 ·R: 11-38-65-67-50/53
- · 8: 9-16-25-33-60-61-62

- + VbF class: Al · Poison class CH (Swiss): 4

Transport/storage:

- · ADR: 3 F1 II UN 1145 . IMDG: 3 II UN 1145
- + IATA/ICAO: 3 II UN 1145

Tanic code 2902 11 00 00

Capacity 110

2,510

410

710

2518

- + PAX: 305
- + CAO: 307
- . LGK: 3 A
- · Disposal: 1

CI0039 Cyclohexane, Multisolvent® HPLC grade ACS ISO UV-VIS

assay (G.C.)	min. 99,9 %
identity (IR-spectrum)	passes test
density (20*/4*)	0.776 - 0.780
appearance	clear
colour (Hazen)	max. 10
melting point.	min. 6,0 *C
acidity	max. 0,0003 meg/g
aluminium (Al)	max. 0,00001 %
barium (Ba).	max. 0,000001 %
boron (B)	max. 0,000002 %
cadmium (Cd)	max. 0,000001 %
calcium (Ca)	max. 0,00003 %
chromium (Cr)	max. 0,000002 %
cobelt (Co)	max. 0,000002 %
copper (Cu)	max. 0,000002 %
iron (Fe)	max. 0,000002 %
lead (Pb)	max. 0,00001 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max. 0,000001 %
nickel (Ni)	max. 0,000002 %
tin (Sn)	max. 0,00001 %
zinc (Zn).	max. 0,000001 %

aromatics (as benzene) cyclohexene (G.C.) ethanol (G.C.). substances darkened by HzSO4	max. max.	0,001 % 0,05 % 0,01 % stest	Code CI0039100 CI0039250
non-volatile matter	max.	0,0002 %	CI0039400
wates (N.P.).	max.	0,01.34	CI0039007
liquid chromatography suitability			CI0039025
absorbance	passe	rs test	
min, transmission/max, absorbance			
in a 1,0 cm cell at			
in a 1,0 cm cell at wavelength:	T(%)	A (AU)	
	T(%) 20 %		
wavelength:	20 %	0,699 AU	
wavelength: 208 nm	20 %	0,699 AU	
wavelength. 208 nm.	20 % 50 %	0,699 AU 0,301 AU	

of pore diameter 0,22 µm

1-Chlorobutane

n-Butyl chloride, n-Propylcarbinyl chloride

- C,H,CI M = 92,57 g/mol
- + CAS [109-69-3]
- +EC number: 203-696-6

Physical data:

- · Density: 0,88 g/cm⁵ Solub. in water (20 °C): - 0,5 g/l
- · Melting point: -123 °C
- · Boiling point: 78 °C
- · Flash point: ~ -17 °C
- · Ignition temp.: 280 °C
- Vapour pressure: (20 *C) ~ 110 hPa
- · Viscosity: (20 *C) 0,45 mPas
- · Expl. limit (upper): 10,1 Vol96
- · Expl. limit (lower): 1,8 Vol%

. LD 50 (oral, rat): 2670 mg/kg . WGK: 3*

Safety:

- EC Index no.: 602-059-00-3

- Tanic code: 2903 19 80 00

assay (G.C.) min. 99,8 % identity (IR-spectrum) passes test 0,885 - 0,887 density (20%4")..... acidity max. 0,0002 meg/g max. 0,0002 meg/g alkalinity. non-volatile matter..... max. 0.0001 % water (K.F.). max. 0,03 %

CL0120 1-Chlorobutane, HPLC grade

min. transmission/max. absorbance

in a 1,0 cm cell at wavelength:	T(%)	A (AU)
225 nm	20 %	0,699 AU
230 nm	50 %	0,301 AU
245 nm.	90 %	0,046 AU

Microfiltered through membranes of pore diameter 0,22 µm

Code	Capacity
CL01201000	110
CL01202500	2,510

Toxicological data:

- ·R:11
- · S: 9-16-29

	_	 	

ð	F
3	Fransport/storage:
	ADR: 3 F1 II UN 1127
	IMDG: 3 II UN 1127

+ IATA/ICAO: 3 II UN 1127 + PAX: 305

- + CAO: 307 · LGK: 3A
- · VbF class: Al
- · Poison class CH (Swiss): 4

Chloroform

Trichloromethane, Formyl trichloride

- · CHCI, M = 119,38 g/mol
- + CAS [67-66-3]
- EC number: 200-663-8

Physical data:

- · Density: 1,47 g/cm³
- · Solub. in water (20 °C): 8 g/l
- · Melting point: -63 °C
- · Boiling point: 61 *C
- · Ignition temp.: 982 *C
- Vapour pressure: (20° C) 213 hPa · Viscosity: (20 °C) 0,56 mPas
- · Dipolar moment: (20 °C) 1,01 Debye
- · Dielectric const.: (20 °C) 4.8
- Saturation conc.: (20 °C) 1027 g/m²

Toxicological data:

- + LD 50 (oral, rat): 908 mg/kg
- MAK: 0,5 mi/m³, 2,5 mg/m³
- · WGK: 3

Safety:

- EC Index no.: 602-006-00-4 · R: 22-38-40-48/20/22
- · S: 36/37-46
- · Poison class CH (Swiss): 1*

Transport/storage:

- + ADR: 6.1 T1 III UN 1888
- + IMDG: 6.1 III UN 1888
- · LATA/ICAO: 6.1 III UN 1888
- + PAX: 610

Хл ×

- + CAO: 612
- +LGK: 10-13 · Disposal: 2

Taric code: 2903 13 00 00 CL0218 Chloroform, stabilized with ethanol, Multisolvent® HPLC grade ACS ISO UV-VIS

assay (G.C.) identity (IR-spectrum) density (20%4°) appearance colour (Hazen) ethanol (G.C.). free acid (as HCI) free chlorine (as CI) chlorides (CI) aluminium (AI)	99,0-99,5 % passes test 1,476 - 1,479 clear max, 10 0,5 - 1,0 % max, 0,0001 % max, 0,0003 % max, 0,00002 % max, 0,00001 %	aldehydes and ketones (as CiHiO) dichlorometane (G.C.) carbon tetrachloride (G.C.) tetrachloroethylene (G.C.) trichloroethylene (G.C.) suitability for use in dithizone tests substances darkened by HiSO4 non-volatile matter water (K.F.).	max. max. max. passe passe max.	is teat 0,01 % 0,01 % 0,01 % 0,01 % is test es test 0,0002 % 0,01 %	Code CL02181000 CL02182500	Capacity 110 2,510
barium (Ba) boron (B) cadmium (Cd)	max. 0,00001 % max. 0,000001 % max. 0,000002 %	liquid chromatography suitability absorbance	passe	is lost		
calcium (Ca) chromium (Cr)	max. 0.000001 % max. 0.000002 % max. 0.000002 % max. 0.000002 % max. 0.000001 % max. 0.000001 % max. 0.000001 % max. 0.000001 %	min. transmission/max. absorbance in a 1,0 cm cell at wavelength: 245 nm. 250 nm. 300 nm. Microfiltered through membranes	T(%) 20 % 50 % 90 % 98 %	0.048 AU		
tin (Sn) zinc (Zn)	max. 0,00001 % max. 0,00003 %	of pore diameter 0,22 µm				

CL0207 Chloroform, HPLC grade, stabilized with amylene (approx. 150 ppm)

assay (G.C.)	min. 99,8 %
identity (IR-spectrum)	passes test
density (20%4*)	1,476 - 1,479
acidity	max. 0,0002 me
alkalinity	max. 0,0002 me
non-volatile matter	max. 0,0003 %
water (K.F.).	max. 0,01 %

in a WORKS eq/g 248 eq/g 253 265

min.

Taric code: 2903 13 00 00

transmission/max. absorbance 1.0 cm cell at			Code	Capacity
relength:	T(%)	A (AU)	CL02071000	110
nm	20 %	0,699 AU	CL02072500	2,510
nm	50 %	0,301 AU		
nm	90 %	0,046 AU		

Microfiltered through membranes of pore diameter 0,22 µm

1-Decane sulfonic acid, sodium salt

AC0801 1-Decane sulfonic acid, sodium salt, HPLC grade

Sodium 1-decylsulfonate

- C., H., NaO, S M = 244,33 g/mol · CAS [13419-61-9]
- EC number: 236-525-9
- Physical data: . Solub. in water (20 °C): soluble Melting point: > 300 °C

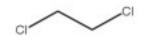
Safety: · S: 24/25

Transport/storage:

+LGK: 10-13

Tario code: 2904 10 00 90

Code	Capacity
AC08010025	25 g ()


assay (acidimetric)	min. 98 %
identity (IR-spectrum)	passes test
insoluble matter	passes test

maximum absorbance of an aqueous	
solution (5%) in a 1,0 cm cell at	
wavelength:	absorbance:
210 nm	0,05 AU
220 nm	0,03 AU
230 nm	0.02 AU
260 nm	0.02 AU

Solvents and Reagents

1,2-Dichloroethane

Ethylene chloride, Ethylene dichloride C,H,Cl, • M = 98,97 g/mol

- + CAS [107-06-2]
- EC number: 203-458-1

Physical data:

- · Density, 1,25 g/cm³
- Solub. in water (20 °C): 0,80 g/l
- · Melting point: -35,5 °C
- Boiling point: 83,5 84,1 *C · Flash point: 13 °C
- Ignition temp.: 412,6 440 °C
- Vapour pressure: (20 °C) 87 hPa
- Viscosity: (20 °C) 0,8 mPas.
- · Saturation conc.: (20°C) 350 g/m³
- · Expl. limit (upper): 16,2 Vol%
- · Expl. limit (lower): 6 Vol%

Toxicological data:

. LD 50 (oral, rat): 670 mg/kg · WGK: 3

Safety:

- EC Index no.: 602-012-00-7 ·R: 45-11-E22-36/37/38
- · S: 53-45
- · VbF class: Al
- · Poison class CH (Swiss): 3

Transport/storage:

- + ADR: 3 FT1 II UN 1184
- + IMDG: 3 II UN 1184
- · IATA/ICAO: 3 II UN 1184
- + PAX: 306
- + GAO: 308
- . LGK: 3 A · Disposal 2

Tario code: 2903 15 00 00

assay (G.C.)	min. 99,8 % passes test
density (20%4*)	1,246 - 1,25
acidity	max. 0,0000
alkainity	max. 0,0000
non-volatile matter	max. 0,0003
water (K.F.)	max. 0,01 9

DI0409 1,2-Dichloroethane, HPLC grade

99,8 %	min. transmission/max. absorbance			Code	Capacity
es test	in a 1,0 cm cell at				
8 - 1,255	wavelength:	T(%)	A (ALI)	DI04091000	110
0,0002 meg/g	230 nm	20 %	0,699 AU	DI04092500	2.510
0,0002 meg/g	235 nm	50 %	0,301 AU		
0,0003 %	245 nm	90 %	0,046 AU		
0,01 %					

Microfiltered through membranes of pore diameter 0,22 µm

Code	Capacity
DI04091000	110
DI04092500	2,510

Dichloromethane

Methylene chloride, Chloramethylene

CH,Cl, • M = 84,93 g/mol

- · CAS [75-09-2]
- EC number: 200-838-9

Physical data:

- · Density: 1,32 g/cm³
- · Solub. in water (20 °C): 20 g/l
- Melting point: ~ -95 °C
- · Boiling point: 40 °C
- · Ignition temp.: 605 °C
- · Vapour pressure: (20 *C) 475 hPa
- · Viscosity: (20 °C) 0,43 mPas
- · Dipolar moment: (20 °C) 1,6 Debye
- Dielectric const.: (20 *C) 9,1

Evap. heat: (40 °C) 329 KJ/kg

Xn ×

- Safety:
 - + EC Index no.: 602-004-00-3 + R: 40
- · S: 23.2-51-25-36/37
- · Poison class CH (Swiss): 4

Transport/storage:

ADR: 6.1 T1 III UN 1593.

Code

CL03471000

CL03472500

CL03474000

CL0347007E

- . IMDG: 6.1 III UN 1593
- + IATA/ICAO: 6.1 III UN 1593

Taric code: 2903 12 00 00

Capacity

2,510

110

410 710

- + PAX: 605
- . CAO: 612
- ·LGK: 10-13
- · Disposal: 2

CL0347 Dichloromethane, stabilized with approx. 50 ppm of amylene, Multisolvent® HPLC grade ACS ISO UV-VIS

assay (G.C.)	min. 99,9 %
identity (IR-spectrum)	passes test
density (20*/4*)	1,323 - 1,325
appearance	clear
colour (Hazen)	max. 10
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
free chlorine (as CI)	max. 0,00002 %
chlorides (CI)	max. 0,0001 %
aluminium (Al).	max. 0,00001 %
barium (Ba).	max. 0,000001 %
boron (B)	max. 0,000002 %
cadmium (Cd)	max. 0,000001 %
calcium (Ca)	max 0,00003 %
chromium (Cr)	max. 0,000002 %
cobalt (Co)	max. 0,000002 %
copper (Cu)	max. 0,000002 %
iron (Fe)	max. 0,000002 %
lead (Pb)	max. 0,00001 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max 0,000001 %
nickel (Ni)	max 0,000002 %
tin (Sn)	max. 0,00001 %
zinc (Zn).	max. 0,000001 %

chloroform (G.C.)	max. I	0,005 %
carbon tetrachloride (G.C.)	max. I	0,005 %
ethanol (G.C.)	max. I	0,02 %
methanol (G.C.)	max. I	0,01 %
formaldehyde	max. I	0,0005 %
substances darkened by H2SO4	passe	is test
non-volatile matter	max. I	0,0002 %
water (K.F.)	max. I	0,01 %
liquid chromatography suitability		
absorbance	passe	is test
min. transmission/max. absorbance		
in a 1,0 cm cell at		
wavelength:	T(%)	A (AU)
235 nm	20.%	0,699 AU
240 nm	50 %	0,301 AU
245 nm	80 %	0,097 AL
248 nm	90 %	0,046 AU
255 nm	98 %	0,009 AU
Liccolitered free ob membranes		

Microfiltered through membranes

of pore diameter 0,22 µm

- · Saturation conc.: (20°C) 1549 g/m
- · Expl. limit (upper): 22 Vol%
- · Expl. limit (lower): 13 Vol%
- · pH (20 °C) 7

Toxicological data:

- . LD 50 (oral, rat): 1600 mg/kg
- MAK: 100 ml/m³, 350 mg/m³
- + WGK: 2

HPLC Solvents and Reagents

GL0335 Dichloromethane,	HPLC grade, stabili	zed with ethan	lor		Taric code: 290	3 12 00 00
assay (G.C.) identity (IR-spectrum) ethanol (G.C.) acidity alkalinity non-volatile matter water (K.F.)	passes test 1,323 - 1,325 max. 0,3 % max. 0,0002 meg/g max. 0,0002 meg/g max. 0,0003 %	in a 1,0 cm cell wavelength 235 nm 238 nm 247 nm	ough membranes		Code CL03351000 CL03352500	Capacity 110 2,510
N,N-Dimethylacetam	ide			3	R,	
Acetic acid dimethylamide	Physical data: • Density: 0,94 g/cm ³ • Solub: in water (20 * • Melting point: -20 *C • Boiling point: 165 -11 • Flash point: 70 *C • Ignition temp.: 320 * • Vapour pressure: (20	65 °C C	Dielectric const.: (25 Saturation conc.: (25 Expl. limit (upper): 1 Expl. limit (lower): 1, pH (200 g/l H ₂ O, 20 Toxicological data: LD 50 (oral, rat): 43	0 °C) 12 g/m ² 1,5 Vol% 7 Vol% °C) - 4	Safety: • EC Index no.: 616-01' • R: 61-E20/21 • S: 26-28.1-36/37-45 • VbF class: Alli • Poison class CH (Swith Transport/storage:	
• CAS [127-19-5] • EC number: 204-826-4	Refraction index: (n : Dipolar moment: (20)		• MAK: 10 ml/m ¹ , 36 • W/GK: 1		LGK: 3 B Disposal: 1	
DI0860 N,N-Dimethylacetar			35504.96555		Taric code 292	4 19 00 90
essay (G.C.) identity (IR-spectrum) density (20 ⁴ /4 ⁹) acidity acidity alkalinity non-volatile matter water (K.F.)	passes test 0,940 - 0,942 max. 0,0005 meg/g max. 0,003 meg/g max. 0,0003 %	in a 1,0 cm cell wavelength: 275 nm. 285 nm.	on/max, absorbance	50 % 0,301 AU	Code Di08601000 Di08602500	Capacity 110 2,510
		Microfiltered thr of pore diamete	ough membranes r 0,22 µm			
N,N-Dimethylformam	ide		-	6	R.T.	
DMF, Formic acid dimethylamide • C,H,NO + M = 73,10 g/mol • CAS [68-12-2]	idde Physical data: • Density: 0,94 g/cm ³ • Solub. in water (20 % • Melting point: -61 %C • Boiling point: -61 %C • Flash point: 58 %C • Ignition temp.: 410 % • Vapour pressure: (21 • Vapour pressure: (21 • Viscosity: (20 %C) 0,6 • Dipolar moment: (20 • Dielectric const.: (20)	of pore diamete C): miscible C 0 °C) 3,77 hPa 20 °C/0) 1,4305 8 mPas 0 °C) 3,8 Debye °C) 36,7	-	.2 Vol% °C) 7 00 mg/kg mg/m ³ 01-00-X	Transport/storage: • ADR: 3 F1 III UN 2265 • IMDG: 3 III UN 2265 • IATA/ICAO: 3 III UN 2 • PAX: 309 • CAO: 310 • LGK: 6.1 A • Disposal: 1	
N,N-Dimethylformam	Physical data: Density: 0,94 g/cm ³ Solub. in water (20 ⁴ Metting point: -61 ⁹ C Boiling point: 153 ⁴ C Flash point: 58 ⁹ C Ignition temp.: 410 ⁹ Vapour pressure: (21 Refraction index: (n: Viscosity: (20 ⁹ C) 0,10 Diolear moment: (20 Diolectric const.: (20 Saturation conc.: (21) mide, Multisolvent [®]	of pore diamete C): miscible C 0 *C) 3,77 hPa 20 *C/0) 1,4305 8 mPas 0 *C) 3,8 Debye *C) 36,7 0 *C) 12 g/m ¹ 1 HPLC grade	 Expl. limit (upper): 10 Expl. limit (upper): 11 Expl. limit (ower): 2 pH (200 g/l H₂O, 20 Toxicological data: LD 50 (oral, rat): 280 MAK: 10 m/l/m², 30 WGK: 1 Safety: EC Index no.: 616-00 R: 61-E20/21-36 S: 53-36/37-45 Poison class CH (Sw ACS ISO UV-VIS 	.2 Vol% °C) 7 00 mg/kg mg/m ³ 01-00-X viss): 3	ADR: 3 F1 III UN 2265 IMDG: 3 III UN 2265 IATA/ICAO: 3 III UN 2 PAX: 309 CAO: 310 LGK: 6.1 A	265
CMF. Formic acid dimethylamide • C,H,NO • M = 73,10 g/mol • CAS [68-12-2] • EC number: 200-679-5	Physical data: • Density: 0,94 g/cm ³ • Solub: in water (20 ⁴⁴) • Metting point: -61 ⁴ O • Boiling point: 153 ⁴ O • Flash point: 58 ⁴ C • Ignition temp.: 410 ⁹ • Vapour pressure: (20 • Refraction index: (n / • Viscosity: (20 ⁴ C) 0,6 • Dipolar moment: (20 • Dietectric const.: (20 • Dietectric const.: (20 • Saturation conc.: (20 • min. 99,9 ⁹⁶ • passes test 0,948 - 0,949 • clear max. 10 • max. 0,0005 meg/g	of pore diamete C): miscible C C 0 °C) 3,77 hPa 20 °C/0) 1,4305 8 mPas PC) 3,8 Debye °C) 36,7 0 °C) 12 g/m ¹ HPLC grade tin (Sn) non-volatile mat water (K.F.) Iquid chromato	 Expl. limit (upper): 10 Expl. limit (upper): 2 pH (200 g/l H₂O, 20) Toxicological data: LD 50 (oral, rat): 280 MAK: 10 m/m³, 30 WGR: 1 Safety: EC Index no.: 616-0 R: 61-E20/21-36 S: 53-36/37-45 Poison class CH (Sw 	.2 Vol% °C) 7 00 mg/kg mg/m ³ 01-00-X riss): 3	ADR: 3 F1 III UN 2265 IMDG: 3 III UN 2265 IATA/ICAO: 3 III UN 2 PAX: 309 CAO: 310 LGK: 6.1 A Disposal: 1	265

Microfiltered through membranes

of pore diameter 0,22 µm

lead (Pb)...

magnesium (Mg)...... max. 0,00001 %

manganese (Mn) max. 0,000001 % nickel (Ni). max. 0,000002 %

max. 0,00001 %

Dimethyl sulfoxide

CH₃ H₃C

DMSO, Sulfinyl bis(methane),

- Methylsulfoxide, Methylsulfinylmethane CJ-LOS • M = 78,13 g/mol
- · CAS [67-68-5]

. EC number: 200-664-3

SI

- Physical data:
- · Density: 1,10 g/cm³
- · Solub. in water (20 *C): miscible · Melting point: 18.5 °C
- Boiling point: (33 hPa) 85 87 °C
- · Flash point: 95 °C
- · Ignition temp.: 300 302 *C
- · Vapour pressure: (20 *C) 0,6 hPa

x

Refraction index: (n 20 *C/D) 1,48

Saturation conc.: (20 °C) 8,0 g/m³

· Viscosity: (25 °C) 1.98 mPas

· Expl. limit (upper): 63.0 Vol%

· Expl. limit (lower): 1,8 Vol%

. LD 50 (oral, rat): 14500 mg/kg

Toxicological data:

WGK: 1

- Safety:
- R: 38/38
- · S: 26
- + Poison class CH (Swiss): F

Transport/storage:

- +LGK: 10-13
- + Disposal: 1

SU0155 Dimethyl sulfoxide,	HPLC grade			Taric code: 293	0 90 70 90
	passes test 1,099 - 1,101 max. 0,0005 meq/g max. 0,0002 meq/g max. 0,0003 %	min, transmission/max, absorbance in a 1,0 cm cell at wavelength: 266 nm. 280 nm. 320 nm.	20 % 50 %	Code SU01551000 SU01552500	Capacity 110 2,510

Microfiltered through membranes of pore diameter 0,22 µm

1,4-Dioxane

Glycolethylether, 1,4-Diethylene dioxide, 1,4-Dioxacyclohexane

- C,H,O, M = 88,11 g/mol
- + CAS [123-91-1] • EC number: 204-661-8

- Physical data: · Density: 1.03 g/cm³
- · Solub. in water (20 °C): miscible
- · Melting point: 12 °C
- · Boiling point: 101,5 °C
- · Flash point 11 °C
- · Ignition temp.: 300 °C
- · Vapour pressure: (20 °C) 41 hPa · Viscosity: (25 °C) 1,2 mPas
- · Dipolar moment: (20 °C) 0,4 Debye
- · Dielectric const.: (25 °C) 2,2
- · Evap. heat: (101 °C) 413 KJ/kg
- Saturation conc.: (20 °C) 149 g/m³

DI1292 1,4-Dioxane, HPLC grade, stabilized with 1 ppm of 2,6-Di-tert-butyl-4-methylphenol (BHT)

m

in

w

2

23

23

· Expl. limit (upper): 25,2 Vol%

- · Expl. limit (lower): 1,7 Vol%
- pH (500 g/l H₂O, 20 °C) 6 8

Toxicological data:

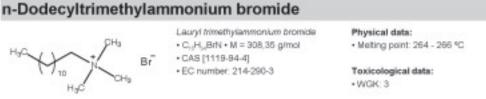
- . LD 50 (oral, rat): 5200 mg/kg MAK: 20 mil/m², 73 mg/m³
- · WGK: 2

Safety:

- EC Index no.: 603-024-00-5
- ·R: 11-19-36/37-40-66

Tario code: 2932 99 85 90

Capacity


2.510

110

assay (G.C.)	min. 99.8 %
identity (IR-spectrum)	passes test
density (20%4*)	1,032 - 1,034
acidity	max. 0,0005 meg/g
alkalinity	max. 0,0002 meg/g
non-volatile matter	max. 0,0005 %
water (K.F.)	max. 0,02 %

nin, transmission/max, absorbance		
n a 1,0 cm cell at		
avelength.	T(%)	A (AU)
15 nm	20 %	0,699 AU
30 nm	50 %	0,301 AU
75 nm	90 %	0,046 AU

Microfiltered through membranes of pore diameter 0,22 µm

BR0180 n-Dodecyltrimethylammonium bromide, HPLC grade

assay (argentometric)	min 97 %
identity (IR-spectrum)	passes test
insoluble matter	passes test

maximum absorbance of an aquecus solution (10%) in a 1,0 cm cell at	
wavelength:	absorbance:
240 nm	0.04 AU
250 nm	0.03 AU
260 nm.	0.02 AU

XI

x

Transport/storage:

·LGK: 10-13

- Taric code: 2923 90 00 90
- Code Capacity BR01800025 25 g 🛙

Transport/storage:

x

· S: 16-36/37

· VbF class: B

ð

+ ADR: 3 F1 II UN 1165 . IMDG: 3 II UN 1165

· IATA/ICAO: 3 II UN 1165

Xn

· Poison class CH (Swiss): 4

+ PAX: 305

Code

DI12921000

DI12922500

- + CAO: 307
- . LGK: 3 A
- · Disposal: 1

Ethanol absolute

Ethyl alcohol, Methylcarbinol, Spirit, Spirit of wine

- · C.H.OH · M = 46,07 g/mol
- · CAS [64-17-5]

• EC number: 200-578-6

Physical data:

- · Density: 0,79 g/cm³
- · Solub. in water (20 °C): miscible
- · Melting point: -114,5 °C
- · Boiling paint: 78,3 *C · Flash point: 12 °C
- · Ignition temp.: 425 °C
- Vapour pressure: (20 *C) 59 hPa
- Viscosity: (20 °C) 1,2 mPas
- · Dipolar moment: (20 °C) 1,7 Debye

tin (Sn)...

titanium (Ti)..

- Dielectric const.: (25 °C) 24,3
- · Evap. heat: (78 °C) 855 KJ/kg

- · Saturation conc.: (20 *C) 105 g/m
- Expl. limit (upper): 15 Vol%
- · Expl. limit (lower): 3,5 Vol%
- pH (10 g/l H,O, 20 °C) 7,0

Toxicological data:

+ LD 50 (oral, rat): 6200 mg/kg MAK: 500 ml/m², 960 mg/m²

. WGK: 1

+ ADR: 3 F1 II UN 1170

max 0.00001 %

max. 0,000002 %

IMDG: 3 II UN 1170

Code

ET00151000

ET00152500

ET00154000

ET0015007E

ET0015025S

Transport/storage:

· IATA/ICAO: 3 II UN 1170

• EC Index no : 603-002-00-5

· Poison class CH (Swiss): F

- + PAX: 305
- + CAO: 307

Safety:

+R:11

+ S: 7-16

· VbF class: B

- . LGK: 3 A
- + Disposal: 1

ET0015 Ethanol absolute , Multisolvent® HPLC grade ACS ISO UV-VIS min 66.6.44

assay (G.C.) (vV)	min. 99,9 %
identity (IR-spectrum)	passes test
density (20%4*)	0,789 - 0,790
appearance	clear
solubility in water	passes test
colour (Hazen)	max 10
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
chlorides (CI)	max. 0,00003 %
nitrates (NOs).	max 0,00003 %
phosphates (PO4).	max. 0,00003 %
sulfates (SO4)	max. 0,00003 %
aluminium (Al)	max. 0,00001 %
antimony (Sb)	max. 0,000002 %
arsenic (As)	max. 0,000002 %
barium (Ba)	max. 0,000001 %
beryllium (Be)	max. 0,000002 %
bismuth (Bi).	max 0,000002 %
boron (B)	max. 0,000002 %
cadmium (Cd)	max. 0,000001 %
calcium (Ca)	max. 0,00003 %
chromium (Cr)	max. 0,000002 %
cobalt (Co)	max. 0,000002 %
copper (Cu)	max. 0,000002 %
gallium (Ga)	max 0,000002 %
gold (Au)	max 0,000002 %
indium (In)	max. 0,000002 %
iron (Fe)	max. 0,00001 %
lead (Pb)	max. 0,00001 %
Ithium (Li).	max. 0,000002 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max. 0,000001 %
molybdenum (Mo)	max. 0,000002 %
nickel (Ni)	max. 0,000002 %
platinum (Pt).	max. 0,000002 %
silver (Ag)	max. 0,000002 %
thallium (TI).	max. 0,000002 %

restricted to find the second s	110000	of the second se	
vanadium (V)	max, I	0,000002 %	
zinc (Zn).	max, I	0,000001 %	
zirconium (Zr).	max. I	0,000002 %	
formaldehyde	max. I	0,0005 %	
furfural	passe	is test	
fusel oil	passe	is test	
acetone (G.C.)	max. I	0,001 %	
benzene (G.C.)	max. I	0,0002 %	
iso-amyl alcohol (G.C.)	max, I	0,05 %	
methanol (G.C.)	max, I	0,01 %	
methylethylketone (G.C.)	max. I	0,02 %	
2-propanol (G.C.)	max. I	0,003 %	
acetaldehyde and acetal (G.C.)	max. I	0,001 %	
aldehydes (as CH sCHO)	max. I	0,001 %	
carbonyl compounds (ac CO)	max. I	0,003 %	
higher alcohols (G.C.)	max. I	0,01 %	
KMnO4 red, matter.	max. I	0,0002 %	
substances darkened by H2SO4	passes test		
non-volatile matter	max. I	0,0002 %	
water (wh/) (K.F.)	max. I	0,1 %	
liquid chromatography suitability			
absorbance	passe	is test	
min. transmission/max. absorbance			
in a 1,0 cm cell at			
wavelength:		A (AU)	
210 nm	35 %	0,456 AU	
220 nm	55 %	0,260 AU	
230 nm	72 %	0,143 AU	
245 nm	90 %	0,046 AU	
270 nm	98 %	0,009 AU	
Nicrofiltered through membranes			
of note diameter, 0.22 um			

of pore diameter 0,22 µm

ET0010 Ethanol absolute, gradient HPLC grade

0.002 AU

assay (G.C.) (vV) identity (IR-spectrum) density (20%4*) acidity. alkalinity non-volatile matter water (v/v) (K.F.)	min. 99,9 % passes test 0,789 - 0,790 max. 0,0002 mecyg max. 0,0002 mecyg max. 0,0003 % max. 0,1 %	min. transmission/max. absorbance in a 1,0 cm cell at wavelength: 205 nm. 220 nm. 245 nm. Microfiltered through membranes	20 % 50 %	A (AU) 0,699 AU 0,301 AU 0,046 AU	Code ET00101000 ET00102500 ET0010007E ET0010025S	Capacity 110 2,510 710 2510
gradient grade (254 nm) maximum background absorbance:	0.02 AU	of pore diameter 0,22 µm				

maximum peak absorbance.

Taric code: 2207 10 00 90

Taric code: 2207 10 00 90

Capacity

110

410

710 2510

2,510

Ethanol, approx. 96%

Ethyl aloohol, Methyloarbinol, Spirit, Spirit of wine

- · C.H.OH · M = 46.07 g/mol
- · CAS [84-17-5]
- . EC number: 200-578-6

- Physical data:
- · Density: 0.81 g/cm3
- · Solub. in water (20 *C): miscible
- · Melting point: -117 °C
- · Boiling point: 78 °C
- · Flash point 9 °C
- · Ignition temp.: 425 °C
- · Vapour pressure: (20 °C) ~ 59 hPa Viscosity: (20 °C) 1,2 mPas
- · Dipolar moment: (20 °C) 1,7 Debye
- Dielectric const.: (25 *C) 24,3

Saturation conc.: (20 °C) 105 g/m²

- · Expl. limit (upper): 15 Vol%
- · Expl. limit (lower): 3,5 Vol%
- pH (10 g/l HLO, 20 °C) 7.0

Toxicological data:

- . LD 50 (oral, rat): 6200 mg/kg
- (anhydrous substance) MAK: 500 ml/m², 960 mg/m²
- · WGK: 1

- Safety:
- + EC Index no.: 603-002-00-5
- +R:11
- · S: 7-16
- · VbF class: B
- · Poison class CH (Swiss): F

Transport/storage:

- ADR: 3 F1 II UN 1170
- + IMDG: 3 II UN 1170

Code

ET00131000

ET00132500

ET00134000

ET0013007E

ET0013025S

- + IATA/ICAO: 3 II UN 1170
- · PAX: 305 . CAO: 307
- + LGK: 3 A

ET0013 Ethanol 96% v/v. Multisolvent® HPLC grade ACS UV-VIS

95.1-96.9 % assay (G.C.) (WV) identity (IR-spectrum) passes test density (20%4*) 0.804 - 0.807 appearance. clear colour (Hazen). max 10 max. 0,0002 meg/g acidity..... alkalinity. max. 0,0002 meg/g max 0.00003 % chlorides (CI)... max 0.00003 % nitrates (NOs). phosphates (PO4) max. 0,00003 % sulfates (SO4) max. 0,00003 % aluminium (Al). max. 0,00001 % antimony (Sb)..... max 0.000002 % arsenic (As) max 0.000002 % barium (Ba). max. 0,000001 % beryllium (Be) max 0,000002 % bismuth (Bi)..... max 0.000002 % max 0.000002 % boron (B) max. 0,000001 % cadmium (Cd)..... calcium (Ca). max 0,00003 % chromium (Cr). max. 0,000002 % cobalt (Co) max. 0,000002 % max 0.000002 % copper (Cu) max 0.000002 % gallium (Ga). gold (Au)... max 0,000002 % indium (In). max. 0,000002 % iron (Fe)..... max. 0.000002 % lead (Pb) max 0.00001 % max. 0,000002 % Ethium (Li). magnesium (Mg)..... max. 0,00001 % manganese (Mn). max. 0,000002 % molybdenum (Mo) max 0,000002 % max 0.000002 % nickel (Ni) max. 0,000002 % platinum (Pt). silver (Ag) max. 0,000002 % max. 0,000002 % thallium (TI). max 0.00001 % tin (Sn).....

titanium (Ti)	max. 0,000002 %
vanadium (V)	max. 0,000002 %
zinc (Zn)	max. 0,000001 %
zirconium (Zr).	max 0,000002 %
formaldehyde	max. 0,0005 %
furfural	passes test
fusel oil	passes test
acetaldehyde and acetal (G.C.)	max. 0,001 %
acetone (G.C.)	max. 0,001 %
benzene (G.C.)	max. 0,0002 %
iso-armyl alcohol (G.C.)	max. 0,05 %
methanol (G.C.)	max, 0,01 %
methylethylketone (G.C.)	max. 0,02 %
2-propanol (G.C.)	max. 0,003 %
aldehydes (as CH sCHO).	max. 0,001 %
carbonyl compounds (as CO)	max. 0,003 %
higher alcohols (G.C.)	max. 0.01 %
KMnO4 red. matter	max 0,0002 %
substances darkened by H2SO4	passes test
non-volatile matter	max 0,0002.%
water (w/v) (K.F.)	3,1-4,9 %
iquid chromatography suitability	
absorbance	passes test
min. transmission/max. absorbance	
in a 1,0 cm cell at	
wavelength:	T(%) A (AU)
210 nm	35 % 0,456 AU
220 nm.	55 % 0,260 AU
230 nm	72 % 0,143 AU
250 nm	90 % 0,048 AU
270 nm	98 % 0,009 AU
Microfiltered through membranes	

of pore diameter 0,22 µm

Taric code: 2207 10 00 90

Capacity

2.510

110

410

710

251

Ethyl acetate

H₃C CH₃

Acetic acid ethyl ester, Acetic ether • C,H,O, • M = 88,10 g/mol

- + CAS [141-78-6]
- EC number: 205-500-4

Physical data:

- · Density: 0,90 g/cm³
- Solub. in water (20 °C): 85,3 g/l
- · Melting point: -83 °C
- · Boiling point: 77 °C · Flash point: -4 °C
- Ignition temp.: 460 ℃
- · Vapour pressure: (20 °C) 97hPa
- Refraction index: (n 20 °C/D) 1,3723
- · Viscosity: (20 °C) 0,44 mPas
- Dipolar moment: (20 °C) 1,78 Debye
- · Dielectric const.: (25 °C) 6,0

Evap. heat: (77 °C) 427 KJ/kg

max 0,1 %

max 0.1 %

max 0.1 %

passes test

max. 0,0002 %

max 0,03 %

passes test

T(%) A (ALI)

20 % 0,699 AU 50 % 0,301 AU

80 % 0,097 AU

90 % 0.046 AU 98 % 0,009 AU

- · Saturation conc.: (20 °C) 336 g/m²
- Expl. limit (upper): 11,5 Vol%
- Expl. limit (lower): 2,1 Vol%

Toxicological data:

- LD 50 (oral, rat): 5620 mg/kg
- MAK: 400 ml/m³, 1500 mg/m³ + WGK: 1

Safety:

ethanol (G.C.).....

methanol (G.C.)...

in a 1.0 cm cell at wavelength:

255 nm.

260 nm..... 263 nm....

280 nm

265 nm

methyl acetate (G.C.)

substances darkened by HgSO4

non-volatile matter

water (K.F.)

liquid chromatography suitability

min. transmission/max. absorbance

Microfiltered through membranes of pore diameter 0,22 µm

absorbance.....

• EC Index no.: 607-022-00-5

· R: 11-36-66-67

- + 8: 16-26-33
- + VbF class: Al
- · Poison class CH (Swiss): 5

Transport/storage:

- ADR: 3 F1 II UN 1173 . IMDG: 3 II UN 1173
- · IATA/ICAO: 3 II UN 1173

Tario code: 2915.31.00.00

Tanic code: 2915.31.00.00

Capacity

110 2,510

Capacity

2.510

110

410

710

2518

+ PAX: 305

Code

AC01551000

AC01552500

AC01554000

AC0155007E

AC01550258

- + CAO: 307
- . LGK: 3 A
- · Disposal: 1

AC0155 Ethyl acetate, Multisolvent" HPLC grade ACS ISO UV-VIS

assay (G.C.)	min. 99,8 %
identity (IR-spectrum)	passes test
density (20%4*)	0,899 - 0,901
appearance	clear
colour (Hazen)	max. 10
acidity	max. 0,0008 meg/g
aluminium (Al).	max 0,00001 %
barium (Ba).	max. 0,000001 %
boron (B)	max. 0,000002 %
cadmium (Cd)	max. 0,000001 %
calcium (Ca)	max. 0,00003 %
chromium (Cr)	max. 0,000002 %
cobalt (Co)	max. 0,000002 %
copper (Cu)	max 0,000002 %
iron (Fe)	max 0,000002 %
lead (Pb)	max. 0,00001 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max. 0,000001 %
nickel (NI)	max. 0,000002 %
tin (Sn)	max. 0,00001 %
zine (Zn).	max. 0,000001 %

NEW AC0158 Ethyl acetate, LC-MS

assay (G.C.)	min. 99,8 %
identity (IR-spectrum)	passes test
density (201/41)	0,899 - 0,902
alkalinity	max. 0,0002 meg
calcium (Ca)	max. 0,00001 %
magnesium (Mg)	max. 0,00001 %
potassium (K)	max. 0,00001 %
sodium (Na)	max. 0,00001 %
non-volatile matter	max. 0,0005 %
water (K.F.)	max. 0,03 %
suitability for use in LC-MS.	passes test

Formic acid, solution 10% in water

a/a microfiltered through membranes

min. transmission/max. absorbance in a 1.0 cm cell at			Code
wavelength:	T(%)	A (AU)	AC01581000
255 nm.	20 %	0,699 AU	AC01582500
258 nm	50 %	0,301 AU	
265 nm	90 %	0,046 AU	

of pore diameter 0,22 µm

suitability for use in LC-MS.....

min. transmission/max. absorbance

in a 1,0 cm cell at wavelength:

260 nm

280 nm

Safety: ·R: 34 · 8:23.2-28-45

Transport/storage:

- ADR: 8 C3 II UN 3265
- IMDG: 8 II UN 3265
- · IATA/ICAO: 8 II UN 3265
- PAX: 808
- + CAO: 812

NEW AC1075 Formic acid, solution 10% in water, for cleaning purposes, LC-MS

formic acid content (v/v)	9,5 - 10,5 %
aluminium (Al).	max. 0,000005 %
calcium (Ca)	max. 0,000005 %
iron (Fe)	max. 0,000005 %
magnesium (Mg)	max. 0,000005 %
potassium (K)	max. 0,000005 %
sodium (Na)	max. 0,000005 %

Code

AC10751000

Tario code: 2915 11 00 00

Capacity

110

passes test

T(%) A (AU)

80 % 0,097 AU 90 % 0.046 AU

Heptafluorobutyric acid, 99,5 %

Perfluorobutyric acid, HFBA, Edman reagent No. 3

. C,HF,O, . M = 214,04 g/mol · CAS [375-22-4] • EC number: 206-786-3

- Physical data:
- · Density: 1,645 g/cm³
- · Solub. in water (20 *C): miscible
- · Melting point: -17,5 °C
- Boiling point: (755mm Hg) 120 °C

NEW AC1235 Heptafluorobutyric acid, 99,5 %

assay (G.C.) min. 99,5 %

water (K.F.)...... max. 0,1 %

Toxicological data:

· 8:26-36/37/39-45

Safety:

R: 34

· MAK: 5 mi/m3, 7 mg/m3

Transport/storage:

- · ADR: 8 C3 II UN 3265 IMDG: 8 II UN 3265
- · IATA/ICAO: 8 II UN 3265
- . PAX: 808 . CAO: 812

51

Code Capacity AC12350100 100 ml 0

Taric code: 2915 60 19 00

n-Heptane

n-Dipropy/methane, n-Hepty/hydride

- C,H, + M = 100,21 g/mol
- · CAS [142-82-5]
- + EC number: 205-553-8

Physical data:

- · Density: 0,68 g/cm³
- · Solub. in water (20 *C): almost nonmiscible
- · Melting point: -90,6 °C
- · Boiling point: 98,4 *C
- · Flash point: -4 °C
- · Ignition temp.: 215 °C
- · Vapour pressure: (20 °C) 48 hPa
- Refraction index: (n 20 °C/D) 1,3876
- · Viscosity: (20 °C) 0.4 mPas
- · Dielectric const.: (20 °C) 1,9
- · Saturation conc.: (20 °C) 196 g/m
- · Expl. limit (upper): 7 Vol%
- . Expl. limit (lower): 1 Vol%

Toxicological data:

- LD 50 (oral, rat): > 15000 mg/kg
- MAK: 500 ml/m², 2100 mg/m³
- WGK: 1

Safety:

- · EC Index no.: 601-008-00-2
- ·R: 11-38-50/53-65-67
- + S: 9-16-29-33-46-60-61-62
- + VbF class: Al
- · Poison class CH (Swiss): 5

Transport/storage:

- + ADR: 3 F1 II UN 1205
- IMDG: 3 II UN 1208
- · IATA/ICAO: 3 II UN 1206

Tanic code: 2901 10 00 00

- + PAX: 305
- + CAO: 307
- +LGK-3 A
- · Disposal: 1

HE0131 n-Heptane, 99%, HPLC grade

assay (G.C.)	min. 99,3 %
identity (IR-spectrum)	passes test
density (20%4*)	0,683 - 0,685
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
non-volatile matter	max. 0,0003 %
water (K.F.)	max. 0,01 %

min. transmission/max. absorbance	
in a 1,0 cm cell at	
wavelength:	T(%)
200 nm	20 %
210 nm	50 %
227 nm	90 %
227 nm	90 %

Microfiltered through membranes of pore diameter 0,22 µm

		Code	Capacity
ŝ	A (AU)	HE01311000	110
	0,699 AU	HE01312500	2,510
	0,301 AU	HE0131007E	710
6	0,046 AU	HE01310258	2518

1-Heptane sulfonic acid, sodium salt monohydrate

· C,H, NeO,S-H,O

• M = 220.26 g/mol

· CAS [207300-90-1]

Sodium 1-hepty/sulfonate monohydrate

Physical data:

. Solub. in water (20 °C): freely soluble

Transport/storage:

- +LGK: 10-13 · Disposal: 28
- Toxicological data: ·WGK:2

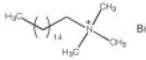
NEW AC1242 1-Heptane sulfonic acid, sodium salt monohydrate, HPLC grade

assay (acidimetric)..... min. 98 % insoluble matter..... passes test

NA^{*} - H₂O

maximum absorbance of an aqueous solution (10%) in a 1,0 cm cell at wavelength: absorbance: 210 nm 0.1 AU 220 nm 0.05 AU 230 nm..... 0,04 AU 260 nm 0.02 AU

Code	Capacity
AC12420025	25 g ()


25 g () AC12420100 100 g ()

Tanio code: 2904 10 00 90

Solvents and Reagents

· C.H., NaO,S Toxicological data: Transport/storage: M = 202,25 g/mol • WGK: 2 · LGK: 10-13 · CAS [22767-50-6] Disposal: 28 • EC number: 245-210-5 Tanic code: 2904 10 00 90 AC1240 1-Heptane sulfonic acid, sodium salt, solution 0,1 mol/l, HPLC grade factor limits. 0.995 - 1.005 Contains agetic acid as preservative Code pH (20 °C) 3.5 ± 0.1 AC12400250 To obtain a solution 0.005 M dilute 1:20 with the appropriate mixture absorbance of an aqueous solution of water-solvent Xn x Hexadecyltrimethylammonium bromide · C. H. BrN Toxicological data: Transport/storage: • M = 364,46 g/mol . LD 50 (oral, rat): 410 mg/kg ADR: 9 M7 III UN 3077

Cetrimonium bramide Trimethy/hexadecylammonium bromide, N-Cetyl-N.N.N-trimethylammonium bromide, CTAB

- · CAS [57-09-0]
- EC number: 200-311-3

Physical data:

1-Heptane sulfonic acid, sodium salt, solution 0,1 mol/l

- Bulk density: 390 kg/m³
- · Solub. in water (20 °C): 3 g/l
- · Melting point: 237 243 *C
- pH (50 g/l H,O, 20 °C) 5 7

BR0170 Hexadecyltrimethylammonium bromide, HPLC grade

assay (argentometric)	mi
identity (IR-spectrum)	pa
insoluble matter	pa

- in. 97 % anana test asses test
- maximum absorbance of a solution in methanol (10%) in a 1,0 cm cell at wavelength: absorbance: 240 nm. 250 nm. 260 nm.

· WGK: 3

Safety:

· R: 22-38/38-50/53

+ Poison class CH (Swiss): 3

· S: 26-39-46-61

0.04 AU 0.03 AU 0.02 AU

Capacity

250 ml 0

- +LGK: 10-13
- + Disposal: 3

+ VbF class: Al

Transport/storage:

· ADR: 3 F1 II UN 1208

 IMDG: 3 II UN 1208 + IATA/ICAO: 3 II UN 1208

+ PAX: 305

+ CAO: 307

. LGK: 3 A

· Disposal: 1

· Poison class CH (Swiss): 4

Taric code: 2923 90 00 90

Code Capacity BR01700025 25 g ()

n-Hexane

n-Caproyihydride, n-Hexylhydride

• C,H., • M = 86,18 g/mol

- · CAS [110-54-3]
- EC number: 203-777-6

Physical data:

HE0234 n-Hexane, 96%, Multisolvent® HPLC grade ACS UV-VIS

- · Density: 0,66 g/cm³
- Solub. in water (20 °C): 0,0095 g/l · Melting point: -94.3 °C
- · Boiling point: 69 °C
- · Flash point -22 °C
- · Ignition temp.: 240 °C
- · Vapour pressure: (20 *C) 160 hPa
- · Viscosity: (20 °C) 0.31 mPas
- Dielectric const.: (20 °C) 1,8
- Saturation conc.: (20 °C) 563 g/m²

· Expl. limit (upper): 8,1 Vol% · Expl. limit (lower): 1.0 Vol%

Toxicological data:

- . LD 50 (oral, rat): 28710 mg/kg
- MAK: 50 mi/m³, 180 mg/m³
- WGK: 1

Safety:

• EC Index no.: 601-037-00-0 ·R: 11.38.48/20.62.65.67.51.53 · S: 9-16-29-33-36/37-61-62

Taric code: 2901 10 00 00

	5				
assay (G.C.) identity (IR-spectrum) density (201/4*) appearance colour (Hazen)	passes test 0,659 - 0,662 clear max 10	aromatic compounds (as benzene) sulphur compounds (as S) substances darkened by HaSO4 non-volstie matter water (K.F.).	max. 0,01 % max. 0,005 % passes test max. 0,0002 % max. 0,005 %	Code HE02341000 HE02342500 HE02344000	Capacity 110 2,510 410
ackiny	max. 0,0003 meg/g max. 0,00001 %	to of showing marks a dishift.		HE0234007E	710
aluminium (Al) berium (Ba)	max. 0,000001 %	liquid chromatography suitability absorbance.	passes test	HE02340258	2518
boron (B)	max. 0,000002 %	0000100100	papago 1001	HEU2340255	2010
cadmium (Cd)	max 0.000001 %	min. transmission/max. absorbance			
calcium (Ca)	max. 0,00003 %	in a 1,0 cm cell at			
chromium (Cr)	max. 0,000002 %	wavelength.	T(%) A (AU)		
cobalt (Co)	max. 0,000002 %	200 nm	10 % 1,000 AU		
copper (Cu)	max. 0,000002 %	210 nm	40 % 0,398 AU		
iron (Fe).	max. 0,000002 %	217 nm	70 % 0,155 AU		
lead (Pb)	max. 0,00001 %	225 nm.	80 % 0,097 AU		
magnesium (Mg)	max. 0,000001 %	245 nm	98 % 0,009 AU		
manganese (Mn)	max. 0,000001 %				
nickel (Ni).	max. 0,000002 %	Microfiltered through membranes			
tin (Sn)	max. 0,00001 %	of pore diameter 0,22 µm			
zine (Zn).	max. 0,000001 %				

- + IATA/ICAO: 9 III UN 3077
- · PAX: 911
- . CAO: 911

C,H., • M = 86,18 g/mol

• EC number: 203-777-6

· CAS [110-54-3]

HE0242 n-Hexane, 99%. HPLC grade

assay (G.C.)	min 99 %
identity (IR-spectrum)	passes test
density (20%4*)	0,660 - 0,662
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
non-volatile matter	max 0,0003 %
water (K.F.)	max. 0,01 %

Hexane, fraction from petroleum

	trar				ax.	80	801	car	içe	
in a	1.0	cm c	xell i	art :						
wav	elen	gth:								
200	nm									
210	nm.									
230	nm.									

Microfiltered through membranes of pore diameter 0,22 µm

T(%)	A (AU)
20 %	0,699 AU
50 %	0,301 AU
90.%	0.046 AU

Code	Capacity
HE02421000	110
HE02422500	2,510

Taric code: 2901 10 00 00

• MAK: 200 ml/m3 , 720 mg/m3

• EC Index no.: 601-037-00-0

• R: 11-38-48/20-62-65-67-51/53

Texicological data:

• WGK: 1

Safety:

X ð

- Transport/storage: ADR: 3 F1 II UN 1208 IMDG: 3 II UN 1208 · IATA/ICAO: 3 II UN 1208 · PAX: 305
- . CAO: 307
- · LGK: 3 A · Disposal: 1
- · S: 9-16-29-33-36/37-61-62 · VbF class: Al · Poison class CH (Swiss): 4

Tanic code: 2901 10 00 00

HE0221	Hexane.	fraction from petroleu	m, Multisolvent®	HPLC grade	ACS

Physical data:

· Density: 0,67 g/cm³

 Boiling point: 65 - 70 °C • Flash point -22 °C

· Solub. in water (20 °C): insoluble

Vapour pressure: (20 °C) 160 hPa

· Refraction index: (n 20 *C/D) 1,380

· Expl. limit (upper): 8,1 Vol%

· Expl. limit (lower): 1,0 Vol%

boiling range	65 - 70 °C
appearance	clear
colour (Hazen)	max. 10
acidity	max. 0,0002 meg/g
aluminium (Al)	max. 0,00001 %
barium (Ba).	max 0,000001 %
boron (B)	max. 0,000002 %
cadmium (Cd)	max. 0,000001 %
calcium (Ca)	max 0,00003 %
chromium (Cr)	max 0,000002 %
cobalt (Co)	max. 0,000002 %
copper (Cu)	max 0,000002 %
iron (Fe)	max. 0,000002 %
lead (Pb)	max. 0,00001 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max. 0,000001 %
nickel (Ni)	max. 0,000002 %
tin (Sn)	max. 0,00001 %
zinc (Zn).	max. 0,000001 %

aromatic compounds (as benzene) sulphur compounds (as S) substances darkened by H2SO4	max 0, max 0, passes	005 %	Code HE02211000	Capacity 110
non-volatile matter		0002 %	HE02212500	2,510
water (K.F.).	max. 0,	01 %	HE02214000	410
liquid chromatography suitability			HE0221007E	710
absorbance	passes	test	HE02210258	2518
min, transmission/max, absorbance in a 1.0 cm cell at				
wavelength:	T(%)	A (AU)		
200 nm	10 %	1,000 AU		
210 nm	30 % (0,523 AU		
230 nm	90 % (0,046 AU		
254 nm	99 % (0,004 AU		
Microfiltered through membranes				
of pore diameter 0,22 µm				

0.04 4

1-Hexane sulfonic acid, sodium salt monohydrate

• C,H,,NaO,S-H,O • M = 206,24 g/mol + CAS [207300-91-2]

Sodium 1-hexylsulfonate monohydrate

Physical data:

. Solub. in water (20 °C): freely soluble

Transport/storage:

+LGK: 10-13 · Disposal: 28

NEW AC1247 1-Hexane sulfonic acid, sodium salt monohydrate. HPLC grade assay (acidimetric). min 00 %

and the function of the second s	
insoluble matter	pass

1101.	90	70
-	-	-
pass	105 I	CO1

maximum absorbance of an aqueous	
solution (10%) in a 1,0 cm cell at	
wavelength:	absorban
210 nm	0,1 AU
220 nm	0,06 AU
230 nm	0,04 AU
260 nm	0,02 AU

sorbance:	
AU	
6 AU	
4 AU	

Taric	code	2904	10 00	90
Code	•		Capa	acity

AC12470025	25 g	0
AC12470100	100 g	0

1-Hexane sulfonic acid, sodium salt, solution 0,1 mol/l

- · C.H., NaO, S
- M = 188,22 g/mol
- · CAS [2832-45-3]
- EC number: 220-601-3

Tanio code: 2904 10 00 90 AC1245 1-Hexane sulfonic acid, sodium salt, solution 0,1 mol/l, HPLC grade

Isohexane

+ C.H., + M = 85.18 g/mol

.CAS (73513-42-5 1

• EC number: 295-570-2

absorbance of an aqueous solution 0,005 M in a 1 cm cell at 254 nm....... < 0,02 AU

(main isomer)

Physical data:

· Density: 0,65 g/cm³ Solub. in water (20 °C): 0,02 g/l

· Melting point: -153 °C

· Ignition temp.: 260 °C

· Vapour pressure: (20 °C) 240 hPa

· Expl. limit (upper): 8,0 Vol%

· Expl. limit (lower): 0,8 Vol%

Flash point -26 °C

· Boiling point: 53 - 63 *C

IS0122 Isohexane, Multisolvent" HPLC grade UV-VIS

To obtain a solution 0.005 M

dilute 1:20 with the appropiate mixture of water-solvent

Contains agetic acid as preservative

Toxicological data:

- . LD 50 (oral, rat): > 5000 mg/kg
- MAK: 50 mil/m³, 180 mg/m³
- · WGK: 1

Safety:

- EC Index no.: 601-007-00-7
- ·R: 11-38-51/53-65-67
- · S: 9-16-29-33-61-62
- · VbF class: Al

Code Capacity AC12450250 250 ml 0

Transport/storage:

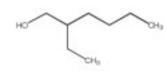
- + ADR: 3 F1 II UN 1208
- . IMDG: 3 II UN 1208 + IATA/ICAO: 3 II UN 1208
- + PAX: 305
- + CAO: 307
- + LGK: 3 A
- · Disposal: 1
 - Tanic code: 2901 10 00 00

Capacity

110

2.510

assay (G.C.) min. 96,5 % n-hexane (G.C.) max 3,5 % Code identity (IR-spectrum) aromatic compounds (as benzene)...... max. 0,01 % passes test IS01221000 sulphur compounds (as S)..... appearance..... clear max, 0.005 % colour (Hazen) max, 10 thiophene... max 0.0001 % 1801222500 substances darkened by HaSO4..... max. 0,0003 meg/g acidity passes test non-volatile matter aluminium (Al). max. 0.00001 % max 0.0002 % barium (Ba). max. 0,000001 % max. 0,005 % water (K.F.)..... boron (B) max 0.000002 % cadmium (Cd)..... max. 0.000001 % min. transmission/max. absorbance max 0.00003 % in a 1.0 cm cell at calcium (Ca).. chromium (Cr)..... max. 0.000002 % wavelength: T(%) A (AU) 200 nm..... cobalt (Co)..... max. 0,000002 % 10 % 1,000 AU copper (Cu)..... max. 0,000002 % 210 nm 50 % 0,301 AU iron (Fe)..... max. 0.000002 % 217 nm..... 70 % 0.155 AU 225 nm..... max 0.00001 % 80 % 0.097 AU lead (Pb). magnesium (Mg)..... max. 0.00001 % 245 nm. 98 % 0.009 AU manganese (Mn)..... max 0.000001 %


Microfiltered through membranes

of pore diameter 0.22 um

Isooctanol

tin (Sn)...

zine (Zn).

nickel (NI).

2-Ethyl-1-hexarol (sooctyl alcohol

- C,H,O M = 130,23 g/mol
- · CAS [104-76-7]
- EC number: 203-234-3

IS0162 Isooctanol, HPLC grade

assay (G.C.) min. 99 % identity (IR-spectrum) passes test density (20%4*)..... 0.832 - 0.833 acidity. max 0.002 meg/g max. 0,001 meg/g alkalinity non-volatile matter. max 0.0003 % water (K.F.) max. 0,15 %

Physical data:

- · Density: 0,83 g/cm³
- · Solub. in water (20 °C): 1,1 g/l
- · Melting point: -76 °C

max. 0,000002 %

max. 0.00001 %

max. 0.000001 %

- · Boiling point: 185 *C
- Flash point: 75 °C
- · Ignition temp.: 270 330 °C Vapour pressure: (20 °C) 0,13 hPa
- Refraction index: (n 20 *C/D) 1,4317
- · Viscosity: (20 °C) 10 mPas
- Expl. limit (lower): 1,1 Vol%
- + pH (1 g1 H,O, 20 °C) 7

Toxicological data:

- + LD 50 (oral, rat): 3730 mg/kg · MAK: 50 ml/m², 270 mg/m²
- ·WGK:2
- · Dielectric const.: (20 °C) 7,7

min. transmission/max. absorbance in a 1,0 cm cell at T(%) A (AU) wavelength: 240 nm..... 40 % 0.398 AU 260 nm..... 80 % 0.097 AU

Microfiltered through membranes of pore diameter 0,22 µm

Safety:

- R: 38/38
- · VbF class: All
- + Poison class CH (Swiss): 4

Transport/storage:

- IATA/ICAO: 9 / UN 3334
- + PAX: 906 + CAO: 905
- · LGK:3 B
- · Disposal: 1

Tanic code: 2905 16 10 00

Code	Capacity
1801622500	2,510

- Saturation conc.: (20 °C) 0.36 g/m³
- Expl. limit (upper): 12,7 Vol%

Methanol

OH

Methyl alcohol, Carbinol, Methynol, Wood alcohol

- · CH,OH · M = 32,04 g/mol
- CAS [87-56-1]
- EC number: 200-659-6

- Physical data:
- · Density: 0,79 g/cm³
- · Solub. in water (20 °C): miscible
- · Melting point: -98 *C
- · Boiling paint: 64,5 °C
- · Flash point: 11 °C
- · Ignition temp.: 455 °C
- · Vapour pressure: (20 °C) 128 hPa
- Refraction index: (n 20 °C/D) 1,3288

- · Evap. heat: (65 °C) 1100 KJ/kg
- · Saturation conc.: (20 °C) 166 g/m
- · Expl. limit (upper): 44 Vol%
- · Expl. limit (lower): < 5.5 Vol%

Toxicological data:

- LD 50 (oral, rat): 5628 mg/kg MAK: 200 ml/m², 270 mg/m²
- ·WGK:1
- · Viscosity: (20 °C) 0,52 mPas
- · Dipolar moment: (20 °C) 1,7 Debye
- Dielectric const.: (25 °C) 32,6

Transport/storage:

+S: 7-16-36/37-45

· VbF class: B

ADR: 3 FT1 II UN 1230

Code

ME03151000

ME03152500

ME03154000

ME0315007E

ME0315025S

 IMDG: 3 II UN 1230 · IATA/ICAO: 3 II UN 1230

Taric code: 2905 11 00 00

Capacity

110

410

710

2518

2,510

• EC Index no .: 603-001-00-X

·R: 11-23/24/25-39/23/24/25

· Poison class CH (Swiss): 3

- + PAX: 305
- + CAO: 307
- . LGK: 3 A

Safety:

+ Disposal: 1

ME0315 Methanol, Multisolvent® HPLC grade ACS ISO UV-VIS K.F.

assay (G.C.) min. 99.9 % identity (IR-spectrum) passes test density (20%4*)..... 0.791 - 0.792 appearance.... clear colour (Hazen)... max. 10 solubility in water passes lest max. 0.0002 meg/g acidity. alkalinity max. 0,0002 meg/g chlorides (CI). max. 0,00005 % sulfates (SO4) ... max. 0,0001 % aluminium (Al).... max. 0.00001 % arsenic (As).... max 0.000002 % barium (Ba). max 0.000001 % beryllium (Be) max. 0.000002 % bismuth (Bi).... max. 0,000002 % max 0,000002 % boron (B) cadmium (Cd)... max. 0.000001 % calcium (Ca). max 0.00003 % chromium (Cr) max. 0.000002 % cobelt (Co)... max. 0,000002 % copper (Cu). max. 0.000002 % max. 0,000002 % gallium (Ga)... gold (Au). max. 0.000002 % indium (In). max. 0.000002 % iron (Fe).... max. 0,000002 % lead (Pb). max 0,00001 % max. 0,000005 % Ithium (Li). magnesium (Mg)..... max 0.00001 % manganese (Mn)..... max. 0.000001 % molybdenum (Mo) max. 0.000002 % max. 0.000002 % nickel (Ni) platinum (Pt). max 0.000005 % silver (Ag) max. 0,000002 %

thallium (TI)	max. I	0,000002 %		
tin (Sn)	max. I	0,00001 %		
titanium (Ti)	max, I	0,000002 %		
vanadium (V)	max, I	0,000002 %		
zinc (Zn)	max. I	0,000001 %		
zirconium (Zr).	max. I	0,000002 %		
acetone (G.C.)	max. I	0,001 %		
ethanol (G.C.)	max. I	0,05 %		
aldehydes, ketones (as acetone)	max. I	0,001 %		
acetaldehyde	max, I	0,001 %		
formaldehyde	max, I	0,0001 %		
carbonyl compounds (as CO)	max, I	0,001 %		
substances darkened by HaSO4	passe	is test		
KMnO4 red. matter (as O)	max. I	max. 0,00025 %		
non-volatile matter	max. 0,0003 %			
water (K.F.)	max. 0,03 %			
liquid chromatography suitability				
absorbance.	passe			
gradient elution	passes test			
min. transmission/max. absorbance				
in a 1.0 cm cell at				
wavelength:	T(%)	A (AU)		
207 nm.	10 %	1.000 AU		
220 nm.	50 %	0.301 AU		
232 nm	80 %	0.097 AU		
242 nm	90.%	0.046 AU		
260 nm.	98.%	0.009 AU		

Microfiltered through membranes of pore diameter 0,22 µm

+

z

П

w s

2 2 g

NEW ME0326 Methanol, LC-MS

assay (G.C.)	min. 99,9 %
identity (IR-spectrum)	passes test
density (201/41)	0,791 - 0,792
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
aluminium (Al)	max. 0,00005 %
barium (Ba)	max. 0,00001 %
cadmium (Cd)	max. 0,000006 %
calcium (Ca)	max. 0,00001 %
chromium (Cr)	max. 0,000002 %
cobalt (Co)	max. 0,000002 %
copper (Cu)	max. 0,000001 %
iron (Fe)	max. 0,00001 %
lead (Pb)	max. 0,000002 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max. 0,000001 %
nickel (Ni)	max. 0,000002 %
potassium (K)	max. 0,00001 %
silver (Ag)	max. 0,00001 %

sodium (Na). tin (Sn). zinc (Zn). non-volatile matter. water (K.F.). suitability for use in LC-MS	max. max. max. max.	0,00001 % 0,00001 % 0,00001 % 0,0005 % 0,02 % st test	Code ME03261000 ME03262500	Capacity 110 2,510
min. transmission/max. absorbance				
in a 1,0 cm cell at				
wavelength	T(%)	A (AU)		
205 nm	20 %	0,699 AU		
215 nm	50 %	0,301 AU		
240 nm	90 %	0,046 AU		
gradient grade (254 nm)				
maximum peak absorbance	max.	0,0002 AU		
microfiltered through membranes				
of pore diameter 0,22 µm				

Taric code: 2905 11 00 00

ME0317 Methanol, fluorescence HPLC grade

assay (G.C.). identity (IR-spectrum). density (20%4*). acidity.	min 99,9 % passes test 0,791 - 0,792 max. 0,0002 meg/g	gradient grade (235 nm) maximum background absorbance maximum peak absorbance
alkalinty. non-volatile matter. water (K.F.).	max. 0,0002 meg/g max. 0,0001 % max. 0,02 %	fluorescence analysis: maxium absorbance: 1 ppb as quinine (in 0,1 N sulfuric acid), for the spectra recorded at the following conditions.
min. transmission/max. absorbance in a 1,0 cm cell at		EX wavelength between 200 and 450 EM wavelength between 250 and 550

wavelength:	T(%)	A (AU)
205 nm	20 %	0,699 AU
215 nm	50 %	0.301 AU
240 nm.	90.%	0.046 AU

Taric	code	2905	11 00 00
Code	9		Capacity

0.015 AU	Code	Capacity
0.0015 AU	ME03171000	110
0,0010110	ME03172500	2,510

ME0306 Methanol, gradient HPLC grade

assay (G.C.)	min 99,9 %
identity (IR-spectrum)	passes test
density (20%4*)	0,791 - 0,792
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
non-volatile matter	max. 0,0001 %
water (K.F.)	max. 0,02 %
gradient grade (235 nm)	
maximum background absorbance	0,015 AU
maximum peak absorbance	0.0015 AU

min. transmission/max. absorbance in a 1.0 cm cell at			Code
wavelength:	T(%)	A (ALI)	ME03061000
205 nm.		0,699 AU	ME03062500
215 nm	50 %	0,301 AU	ME03064000
240 nm	90 %	0,046 AU	
			ME0306007E
Microfiltered through membranes			ME0306025S
of pore diameter 0,22 µm			

ME0310 Methanol, isocratic HPLC grade (254 nm)

assay (G.C.)	min. 99,7 %		
identity (IR-spectrum)	passes test		
density (20*/4*)	0,791 - 0,792		
acidity	max. 0,0002 meg/g		
alkalinity	max. 0,0002 meg/g		
non-volatile matter	max. 0,0005 %		
water (K.F.).	max. 0,05 %		

min. transmission/max. absorbance in a 1,0 cm cell at wavelength: T(%) A (AU) 212 nm. 20 % 0,699 AU 220 nm. 50 % 0,301 AU 243 nm. 90 % 0,048 AU

Microfiltered through membranes of pore diameter 0,22 µm

Microfiltered through membranes of pore diameter 0,22 µm

Taric code: 2905 11 00 00

Tario code: 2905 11 00 00

Code	Capacity
ME03101000	110
ME03102500	2,510
ME03104000	410
ME0310007E	710
ME0310258	2518

8

Methanol with 0,1% acetic acid

Safety:

- ·R: 11-23/24/25-39/23/24/25
- 8:7-16-36/37-45
- VbF class: B

Transport/storage:

- + ADR: 3 FT1 II UN 1992
- IMDG: 3 II UN 1992
- IATA/ICAO: 3 II UN 1992
- PAX: 305
 CAO: 307

NEW ME0329 Methanol with 0,1% acetic acid , LC-MS

	acetic acid content (v/v) salcium (Ca)	max. 0,00005 %	min. transmission/max. absorbance in a 1,0 cm cell at			Code ME03291000	Capacity
1	nagnesium (Mg)	max. 0,00005 %	wavelength:	T(%)	A (AU)	MIE03291000	
1	potassium (K)	max. 0,00005 %	210 nm	5%	1,301 AU	ME03292500	2,510
	odium (Na)	max. 0,0002 %	230 mn	50 %	0,301 AU		
5	suitability for use in LC-MS	passes test	254 nm	95 %	0,022 AU		
,	gradient grade (254 nm)		microfiltered through membranes				

maximum peak absorbance max. 0,01 AU

microfiltered through membranes of pore diameter 0,22 µm

Taric code: 3822 00 00 00

Methanol with 0,1% ammonium acetate

Safety:

- ·R: 11-23/24/25-39/23/24/25
- · 8: 7-16-35/37-45
- · VbF class: B
- Transport/storage: ADR: 3 FT1 II UN 1992
- IMDG: 3 II UN 1992
- · IATA/ICAO: 3 II UN 1992
- PAX: 305
- . CAO: 307

min. transmission/max. absorbance

NEW ME0330 Methanol with 0,1% ammonium acetate, LC-MS

ammonium acetate content (w/v) calcium (Ca) magnesium (Mg) potassium (K) sodium (Na)	0,093 - 0,107 % max. 0,00005 % max. 0,00005 % max. 0,00005 % max. 0,00005 %
suitability for use in LC-MS	passes test
gradient grade (254 nm)	

in a 1.0 cm cell at wavelength: T(%) A(210 nm 5 % 1,30 60 % 0.2 230 nm. 90 % 0.048 AU 254 nm.

	Code	Capacity
(AU)	ME03301000	110
IUA 10	ME03302500	2,510
22 AU		

microfiltered through membranes maximum peak absorbance...... max. 0,01 AU of pore diameter 0,22 µm

Methanol with 0,1% trifluoroacetic acid

Safety:

- ·R: 11-23/24/25-39/23/24/25 · S: 7-16-36/37-45
- · VhF class: B

- Transport/storage:
- ADR: 3 FT1 II UN 1992
- · IMDG; 3 II UN 1992
- IATA/ICAO: 3 II UN 1992 • PAX: 305
- . CAO: 307

NEW ME0327 Methanol with 0,1% trifluoroacetic acid, LC-MS

trifluoroacetic acid content (wV)	0,093 - 0,107 %
calcium (Ca)	max. 0,00005 %
magnesium (Mg)	max. 0,00005 %
potassium (K)	max. 0,00005 %
sodium (Na)	max. 0,0002 %
suitability for use in LC-MS	passes test

gradient grade (254 nm) maximum peak absorbance...... max. 0,01 AU

in a 1,0 cm cell at		
wavelength	T{%}	A (AU)
210 nm.	5 %	1,301 AU
230 nm	35 %	0,456 AU
254 nm.	90 %	0.046 AU

microfiltered through me

	90 %	0,046	AU
embranes			

Code Capacity

110 ME03271000 2,510 ME03272500

Tanic code: 3822.00.00.00

of pore diameter 0,22 µm

Mixture 2-propanol/water, 50:50 (v/v)

Safety: · R: 10-36-67 · S:26

Transport/storage:

- ADR: 3 F1 III UN 1993
- IMDG: 3 III UN 1993
- · IATA/ICAO: 3 III UN 1993

max. 0,00001 %

max 0,00001 %

max. 0,1 %

49 - 51 %

passes test

max 0.001 %

- PAX: 309
- . CAO: 310

organic impurities (G.C.).

non-volatile matter.....

suitability for use in LC-MS

tin (Sn).....

zinc (Zn).....

water (K.F.).....

NEW ME0797 Mixture 2-propanol/water, 50:50 (v/v), for cleaning purposes, LC-MS

aluminium (Al).	max. 0,00005 %
barium (Ba)	max. 0,00001 %
cadmium (Cd)	max. 0,000005 %
calcium (Ca).	
chromium (Cr)	max. 0,000002 %
cobalt (Co)	max. 0,000002 %
copper (Cu)	max. 0,000002 %
iron (Fe)	max. 0,00001 %
lead (Pb)	max. 0,00001 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max. 0,000002 %
nickel (Ni)	max. 0,000002 %
potassium (K)	max. 0,00001 %
silver (Ag)	max. 0,00001 %

min. transmission/max. absorbance		
in a 1,0 cm cell at		
wavelength:	T(%)	A (AU)
210 nm	80 %	0,097 AU
230 nm	90 %	0,046 AU
254 nm	98 %	0,009 AU

identity for 2-propanol (G.C.)..... passes test

Tario			

Code	Capacity
ME07971000	110

AF <u>_</u>

insoluble matter...

1-Octane sulfonic acid, sodium salt monohydrate

Sodium 1-octylsulfonate monohydrate

assay (acidimetric)..... min. 98 %

· C,H,NaO,SH,O • M = 234,29 g/mol · CAS [207596-29-0] Physical data: · Solub. in water (20 °C): soluble

Transport/storage:

+LGK: 10-13 + Disposal: 3

Toxicological data: . WGK: 3*

NEW AC1702 1-Octane sulfonic acid, sodium salt monohydrate. HPLC grade

passes test

maximum absorbance of an aqueous solution (10%) in a 1.0 cm cell at	
wavelength:	absorbance
210 nm	0.1 AU
220 nm	0.06 AU
230 nm	0.04 AU
260 nm	0.02 AU

Taric code 2904 10 00 90

Code	Capacity		
AC17020025	25 g 🛙		

1-Octane sulfonic acid, so	dium salt, solution 0,1 mol/l
----------------------------	-------------------------------

· C,H,NaO,S

- M = 216,28 g/mol
- · CAS [5324-84-5]
- EC number: 226-196-4
- Texicological data: • WGK: 2

Transport/storage: ·LGK: 10-13

· Disposal: 3

AC1700 1-Octane sulfonic acid, sodium salt, solution 0,1 mol/l, HPLC grade

pH (20 °C) 35±01

Contains acetic acid as preservative

absorbance of an aqueous solution 0,005 M in a 1 cm cell at 254 nm...... < 0,02 AU

To obtain a solution 0.005 M dilute 1:20 with the appropriate mixture of water-solvent

Code	Capacity		
AC17000250	250 ml ()		
AC17001000	110		

Taric code: 2904 10 00 90

n-Pentane

- 1.3-Dimethylpropane, Diethyl methane
- C₀H₁₂ M = 72,15 g/mol

- · CAS [109-66-0]
- EC number: 203-692-4

Physical data:

- · Density: 0,63 g/cm³
- Solub. in water (25 °C): 0,04 g/l
 - · Melting point: -129,7 °C
 - · Boiling point: 36.1 *C
 - Flash point: -49,4 °C
- · Ignition temp.: 285 °C
- Vapour pressure: (20 °C) 573 hPa
- Dielectric const.: (20 °C) 1,8
- Evap. heat: (36 °C) 383 KJ/kg
- Saturation conc.: (20 °C) 1689 g/m³
- · Expl. limit (upper): 8 Vol% · Expl. limit (lower): 1,4 Vol%

· WGK: 1

Toxicological data:

Safety:

• EC Index no.: 601-006-00-1 [1]

MAK: 1000 mi/m³, 3000 mg/m³

- ·R: 12-51/53-65-66-67
- · S: 9-16-29-33-61-62
- · VbF class: Al
- · Poison class CH (Swiss): 5
- · IATA/ICAO: 3 II UN 1265
- + PAX: 305
- + CAO: 307
- + LGK: 3 A
- · Disposal: 1

Tanic code: 2901 10 00 00

assay (G.C.)	min. 99 %
identity (IR-spectrum)	
density (20%4*)	0,625 - 0,627
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
non-volatile matter	max. 0,0003 %
water (K.F.)	max. 0,01 %

PE0097 n-Pentane, 99%, HPLC grade

in a 1,0 cm cell at
wavelength:
200 nm.
210 nm
230 nm

min transmission/may absorbance

Microfiltered through membranes of pore diameter 0.22 µm

		Code	Capacity
T(%)	A (AU)	PE00971000	110
	0,699 AU	PE00972500	2,510
50 %	0,301 AU	PE0097007E	710
90 %	0,046 AU	r saver ever s	

8 F+ X Xn

Safety:

- . EC Index no : 601-006-00-1 [1]
- ·R: 12-51/53-65-68-67
- +8:9-16-29-33-61-62
- + VbF class: Al
- · Poison class CH (Swiss): 5

Transport/storage:

- + ADR: 3 F1 II UN 1265
- . IMDG: 3 II UN 1265

pacity 110

T(%)	A (AU)
20 %	0,699 AU
50.%	0.301 AU

1-Pentane sulfonic acid, sodium salt monohydrate

165	X	Na [*] H _i O
	0	

 C,H,,NaO,S:H,O • M = 192,21 g/mol

Sodium 1-pentylsulfonate monohydrate

260 nm.

· CAS [207605-40-1]

Physical data: · Solub. in water (20 °C): freely soluble

0.02 AU

Transport/storage:

+LGK: 10-13 + Disposal: 28

Toxicological data: · WGK: 3

Taric code: 2904 10 00 90 NEW AC1745 1-Pentane sulfonic acid, sodium salt monohydrate. HPLC grade assay (acidimetric)...... min. 98 % maximum absorbance of an aquecus Code Capacity passes test insoluble matter. solution (10%) in a 1,0 cm cell at AC17450025 25 g 🗋 wavelength: absorbance. 210 nm 0.1 AU 220 nm. 0.06 AU 0.04 AU 230 nm

1-Pentane sulfonic acid, sodium salt, solution 0,1 mol/l

· C.H., NaO, S

- M = 174.20 g/mol
- · CAS [22767-49-3]
- EC number: 245-208-4

AC1740 1-Pentane sulfonic acid, sodium salt, solution 0,1 mol/l, HPLC grade

factor limits pH (20 °C).....

0.995-1,005 3.5 ± 0.1

Contains acetic acid as preservative

To obtain a solution 0,005 M dilute 1:20 with the appropiate mixture of water-solvent

Transport/storage:

· Disposal: 28

Tario code: 2904 10 00 90

Code Capacity AC17400250 250 ml 0

absorbance of an aqueous solution 0,005 M in a 1 cm cell at 254 nm..... < 0.02 AU

Petroleum ether, boiling range 40 - 60 °C

Petroleum benzine, Petroleum spirit · CAS [64742-49-0] • EC number: 265-161-9

manganese (Mn).

Physical data:

- Density: (15 °C) 0,65 g/cm³ · Solub. in water (20 °C): almost nonmiscible
- Melting point: < -100 °C
- Boiling point: 40 60 °C
- Flash point: < -21 °C
- · Ignition temp.: 250 °C
- · Vapour pressure: (20 *C) 350 hPa
- Viscosity: (20 °C) 0.45 mPas

ET0095 Petroleum ether, boiling range 40 - 60 °C, Multisolvent® HPLC grade ACS ISO UV-VIS

- Expl. limit (upper): 8 Vol%
- · Expl. limit (lower): 0,8 Vol%

max 0,000001 %

Toxicological data:

- LD 50 (oral, rat): > 5000 mg/kg
- MAK: 50 ml/m³, 180 mg/m³
- WGK: 1

Safety:

- EC Index no.: 649-328-00-1
- · R: 11-52/53-65
- · S: 9-16-23.2-51-24-33-46-62
- · VbF class: Al
- · Poison class CH (Swiss): 4

Tanic code: 2710 11 25 00

		-			
colour (Hazen) density (20144*) appearance boling range (40 - 60 * C) acidity iodine index peroxide index aluminium (Al) barium (Ba)	max. 10 0,640 - 0,655 clear min. 90 % vol max. 0,0003 meq/g max. 0,3 max. 0,00001 % max. 0,000001 %	nickel (N) tin (Sn) zinc (Zn) aromatic compounds (as benzene) sulphur compounds (as S) substances darkened by H ₂ SO ₄ non-volatile matter water (K.F.).	max. 0,000002 % max. 0,00001 % max. 0,00001 % max. 0,005 % max. 0,005 % passes test max. 0,0002 % max. 0,001 %	Code ET00951000 ET00952500 ET00954000 ET0095007E ET00950258	Capacity 110 2,510 410 710 2518
boron (B) cadmium (Cd) calcium (Ca) chromium (Cr) cobalt (Co) copper (Cu) iron (Fe)	max. 0,000002 % max. 0,000001 % max. 0,000003 % max. 0,000002 % max. 0,000002 % max. 0,000002 %	min. transmission/max. absorbance in a 1,0 cm cell at wavelength: 200 nm. 210 nm. 230 nm.	T(%) A (AU) 20 % 0,699 AU 50 % 0,301 AU 90 % 0,045 AU		
lead (Pb) magnesium (Mg) manganese (Mn)	max. 0,00001 % max. 0,00001 % max. 0,000001 %	Microfiltered through membranes of pore diameter 0,22 µm			

x ð

Transport/storage:

ADR: 3 F1 II UN 1268

Xn

- IMDG: 3 II UN 1268 · IATA/ICAO: 3 II UN 1268
- PAX: 305
- · CAO: 307
- . LGK: 3 A
- · Disposal: 1

HP **Solvents and Reagents**

Potassium dihydrogen phosphate

Potassium biphosphate; Potassium phosphate monobasic, Primary potassium phosphate, Mono-potassium phosphate

- KH₂PO₄ M = 138,09 g/mol
- · CAS [7778-77-0]
- . EC number: 231-913-4

Physical data:

- · Spec. density: 2.34 g/cm³
- Bulk density: ~ 1200 kg/m³
- · Solub. In water (20 °C): 222 g/l
- Melting point: ~ 253 °C (decomposes)
- pH (50 g/l H,O, 20 °C) ~ 4,4

PO0261 Potassium dihydrogen phosphate, HPLC grade

assay (acidimetric)	min. 99,5 %
Identity (IR-spectrum)	passes test
insoluble matter	passes test
pH (5%, H ₂ O).	4,2 - 4,5
chlorides (CI)	max. 0,0005 %
heavy metals (as Pb)	max. 0,0005 %
iron (Fe)	max. 0,0005 %

maximum absorbance of an aquecus solution (10%) in a 1,0 cm cell at	
wavelength:	absorbance:
210 nm	0,1 AU
220 nm	0,06 AU
230 nm.	0.04 AU
300 nm	0.02 AU

Toxicological data:

• WGK: 1

Safety:

· Poison class CH (Swiss): 5

Transport/storage:

- +LGK: 10-13
- Disposal: 14

Tanic code: 2835 24 00 00

Code Capacity PO02610250 250 g ()

di-Potassium hydrogen phosphate trihydrate

Secondary potasalum phosphate,

- Potassium phosphate dibasic
- K.HPO, 3H,O M = 228,23 g/mol
- · CAS [16788-57-1]
- EC number: 231-834-5

Physical data:

- Bulk density: ~ 800 kg/m²
- · Solub. in water (20 °C): freely soluble
- · pH (50 g/l H,O, 20 °C) 9,2 9,4

Toxicological data: • WGK: 1

Safety:

· Poison class CH (Swiss): 5

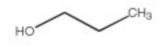
Transport/storage:

- LGK: 10-13
- Disposal: 14

PO0270 di-Potassium hydrogen phosphate trihydrate, HPLC grade

99.%

assay (acidimetric)	min. 99 %
identity (IR-spectrum)	passes test
insoluble matter	passes test
pH (5%, H ₂ O)	9,2-9,4


maximum absorbance of an aqueous solution (10%) in a 1,0 cm cell at	
wavelength:	absorba
230 nm.	0,1 AU
240 nm.	0.06 AU
250 nm	0.04 AU
310 nm.	0.02 AU

absorband	:0:
0,1 AU	
0,06 AU	
0,04 AU	
0.02 AU	

Code	Capacity
PO02700250	250 g 🖯
PO02701000	1 kg 🛙

Taric code: 2835 24 00 00

1-Propanol

n-Propyl alcohol, Ethylcarbinol, 1-Hydroxypropane, n-Propanol

· C,H,O · M = 60,10 g/mol · CAS [71-23-8]

• EC number: 200-746-9

Physical data:

- · Density: 0,80 g/cm³ · Solub. in water (20 °C): miscible
- · Melting point -127 °C
- · Boiling point: 96,5 98 °C
- · Flash point: 15 °C
- · Ignition temp.: 405 °C
- · Vapour pressure: (20 *C) 19 hPa
- Viscosity: (20 °C) 2,75 mPas

· Dipolar moment: (20 °C) 1,7 Debye Dielectric const.: (25 °C) 20,1

- · Saturation conc.: (20 °C) 46 g/m¹
- Expl. limit (upper): 13,5 Vol%
- Expl. limit (lower): 2,1 Vol%
- pH (200 g/l H₁O, 20 °C) 7

Toxicological data:

. LD 50 (oral, rat): 1870 mg/kg · WGK: 1

Safety:

EC Index no.: 603-003-00-0

Taric code: 2905 12 00 00

AL0438 1-Propanol, HPLC grade

assay (G.C.)	тіп. 99,9 % passes test 0,803 - 0,804 так. 0,0002 meg/g так. 0,0002 meg/g так. 0,0003 % так. 0,005 %		20 % 50 %	A (AU) 0.699 AU 0.301 AU 0.046 AU	Code AL04381000 AL04382500 AL0438007E AL0438025S	Capacity 110 2,510 710 2510
		Microfiltered through membranes				

of pore diameter 0.22 µm

ð X

- - · S: 7-16-24-26-39
 - · Poison class CH (Swiss): 4

Transport/storage:

- · IATA/ICAO: 3 II UN 1274

· R: 11-41-67

· VbF class: B

- + ADR: 3 F1 II UN 1274
- + IMDG: 3 II UN 1274
- · PAX: 305
- + CAO: 307
- . LGK: 3 A
- · Disposal: 1

2-Propanol

(sopropyl alcohol, iso-Propyl alcohol, (sopropanol) iso-Propanol, Dimethylcarbinol, 2-Hydroxypropane

- C,H,O M = 60,10 g/mol
- · CAS [67-63-0]
- EC number: 200-661-7

Physical data:

- · Density: 0,78 g/cm² · Solub. in water (20 °C): miscible
- · Melting point: -89,5 °C
- · Boiling point: 82,4 °C
- · Flash point: 12 °C
- Ignition temp.: 425 °C
- · Vapour pressure: (20 °C) 43 hPa
- · Viscosity: (20 *C) 2,27 mPas

· Dipolar moment: (20 °C) 1,66 Debye

- Dielectric const.: (25 °C) 18,3
- Saturation conc.: (20 °C) 105 g/m²
- · Expl. limit (upper): 12,7 Vol%
- · Expl. limit (lower): 2 Vol%
- pH (20 *C) ~ 7

Toxicological data:

- + LD 50 (oral, rat): 5045 mg/kg
- MAK: 200 ml/m², 500 mg/m²
- · WGK: 1

Safety:

- + EC Index no.: 603-117-00-0
- · R: 11-36-67
- · S: 7-18-24/25-26
- · VbF class: B
- + Poison class CH (Swiss): F

Transport/storage:

- + ADR: 3 F1 II UN 1219
- + IMDG: 3 II UN 1219

Code

- + IATA/ICAO: 3 II UN 1219 · PAX: 305
- + CAO: 307
- + LGK: 3 A
- · Disposal: 1

AL0321 2-Propanol, Multisolvent® HPLC grade ACS ISO UV-VIS

assay (G.C.) .. min. 99,8 % identity (IR-spectrum) passes test density (20%4*) 0,784 - 0,785 clear appearance. max. 10 colour (Hazen). solubility in water. passes test acidity. max. 0,0001 meg/g max. 0,0001 meg/g alkalinity max 0,00003 % chlorides (CI) nitrates (NOs). max 0.00003 % phosphates (POu). max. 0,00005 % sulfates (SO4). max 0,0001 % aluminium (Al). max 0,00001 % max 0,000002 % antimony (Sb) max. 0.000002 % arsenic (As)... barium (Ba). max 0,000001 % beryllium (Be). max 0,000002 % bismuth (Bi)..... max 0,00001 % boron (B) max 0.000002 % max 0.000001 % cadmium (Cd). calcium (Ca). max. 0,00001 % chromium (Cr). max 0,000002 % cobalt (Co). max. 0,000002 % copper (Cu) max 0,000002 % max 0.000002 % gallium (Ga). gold (Au). max. 0,000002 % indium (In). max. 0,000002 % iron (Fe). max 0,00001 % lead (Pb) max 0.00001 % magnesium (Mg).... max 0.000002 % manganese (Mn)..... max 0,000002 % molybdenum (Mo) max 0,000002 % nickel (Ni) max. 0.000002 %

platinum (Pt)	max. 0,000002 %
silver (Ag)	max. 0,000002 %
thalium (TI).	max. 0,000002 %
tin (Sn)	max. 0,00001 %
titanium (Ti)	max. 0,000002 %
vanadium (V)	max. 0,000002 %
zinc (Zn).	max. 0,000001 %
zirconium (Zr).	max. 0,000002%
acetone (G.C.)	max, 0,01 %
ethanol (G.C.)	max. 0,01 %
isopropylether (G.C.)	max. 0,01 %
methanol (G.C.)	max. 0,01 %
n-propanol (G.C.)	max. 0,1 %
carbonyl compounds (as CO)	max. 0,002 %
KMnO4 red. matter	max. 0,0002 %
substances darkened by H ₂ SO ₄	passes test
non-volatile matter	max, 0,0002 %
water (K.F.)	max. 0,05 %
liquid chromatography suitability	
absorbance	passes test
min. transmission/max. absorbance	
in a 1,0 cm cell at	
wavelength:	T(%) A (AU)
207 nm.	10 % 1,000 AU
217 nm	50 % 0,301 AU
232 nm.	80 % 0,097 AU
242 nm	90 % 0.046 AU

Microfiltered through membranes

of pore diameter 0,22 µm

Tanic code: 2905 12 00 00

Capacity

0,000002 %		
0,000002 %	AL03211000	110
0,00001 %	AL03212500	2,510
0,000002 %	AL03214000	410
0,000002 %	AL0321007E	710
0,000001 %		
0,000002%	AL0321025S	251 🗄
0,01 %		
0,01 %		
0,01 %		
0,01 %		
0,1 %		
0,002 %		
0,0002 %		
ies test		
0,0002 %		
0,05 %		
ves test		
A (AU)		
6 1,000 AU		
6 0,301 AU		
6 0,097 AU		
6 0,048 AU		
6 0.009 AU		

NEW AL0326 2-Propanol, LC-MS

assay (G.C.)	min. 99,9 %
identity (IR-spectrum)	passes test
density (201/4°)	0,784 - 0,785
acidity	max. 0,0001 meg/g
aluminium (Al).	max. 0,00005 %
barium (Ba).	max. 0,00001 %
cadmium (Cd)	max. 0,000005 %
calcium (Ca)	max. 0,00001 %
chromium (Cr)	max. 0,000002 %
cobalt (Co)	max. 0,000002 %
copper (Cu)	max. 0,000002 %
iron (Fe)	max. 0,00001 %
lead (Pb)	max. 0,00001 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max. 0,000002 %
nickel (Ni)	max 0,000002 %
potassium (K)	max. 0,00001 %
silver (Ag)	max 0,00001 %
sodium (Na)	max. 0,00001 %

Taric code 2905 12 00 00

tin (Sn) zinc (Zn) non-volatile matter water (K.F.) suitability for use in LC-MS	max: 0,00001 % max: 0,00001 % max: 0,0005 % max: 0,05 % passes test	Code AL03261000 AL03262500	Capacity 110 2,510
min. transmission/max. absorbance in a 1,0 cm cell at wavelength: 210 nm. 215 nm. 240 nm.	T(%) A (AU) 20 % 0,699 AU 50 % 0,301 AU 90 % 0,046 AU		
gradient grade (254 nm) maximum peak absorbance microfiltered through membranes of pore diameter 0,22 µm	max 0,005 AU		

Solvents and Reagents

Code

AL03151000

AL03152500

AL0315007E

AL0315025S

Tanic code: 2905 12 00 00

Capacity

2.510

710

2518

110

AL0315 2-Propanol, gradient HPLC grade

	The second s
assay (G.C.)	min. 99,8 %
identity (IR-spectrum)	passes test
density (20%4*)	0,784 - 0,785
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
non-volatile matter	max. 0,0003 %
water (K.F.)	max. 0,05 %
gradient grade (240 nm)	
maximum background absorbance:	0.025 AU
maximum peak absorbance	0,002 AU

Sodium acetate trihydrate

3H₂O H₂O Na

Acetic acid sodium salt trihydrate

· CH,COONe 3H,O · M = 136,08 g/mol

- · CAS [6131-90-4]
- . EC number: 204-823-8

SO0030 Sodium acetate trihydrate, HPLC grade

assay (ttr. with HCIO 4)
identity (IR-spectrum)
insoluble matter

Physical data:

min. 99,5 %

passes test

passes test

- · Spec. density: 1,42 g/cm³
- Bulk density: ~ 900 kg/m²
- Solub. in water (20 °C): 613 g/l · Melting point: 58 °C
- · Boiling point: > 400 *C (anhydrous substance) (decomposes) Flash point: > 250 °C (anhydrous substance)

· Ignition temp.: 607 *C • pH (50 g/1 H,O, 20 °C) 7,5 - 9,2

min. transmission/max. absorbance

Microfiltered through membranes of pore diameter 0,22 µm

maximum absorbance of an aqueous

maximum absorbance of an aqueous

solution (10%) in a 1,0 cm cell at

wavelength:

280 nm

270 nm.

300 nm.

330 nm

solution (10%) in a 1,0 cm cell at

wavelength:

250 nm

260 nm.

in a 1,0 cm cell at

wavelength:

210 nm

215 nm

240 nm.

Toxicological data: · LD 50 (oral, rat): 3530 mg/kg (anhydrous substance) . WGK: 1

Safety:

T(%) A (AU) 20 % 0.699 AU

50 % 0.301 AU

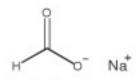
90 % 0,046 AU

absorbance:

0.05 AU

0.01 AU

+ Poison class CH (Swiss): 5


Transport/storage:

+LGK: 10-13 · Disposal: 14

Taric code: 2915 22 00 00

Code Capacity 8000300250 250 g () SO00301000 1 kg ()

Sodium formate

Formic acid, sodium sait

- · NaCOCH · M = 68,01 g/mol
- · CAS [141-53-7] EC number: 205-488-0

SO0325 Sodium formate, HPLC grade

assay (iodometric)	min. 99,5 %
identity (IR-spectrum)	passes test
insoluble matter	passes test
pH (5%, H2O).	7.0 - 8.5
heavy metals (as Pb)	max 0,0005 %
iron (Fe)	max 0,0005 %

Physical data:

- · Spec. density: 1,92 g/cm²
- · Bulk density: 635 kg/m
- · Solub. in water (20 °C): 820 g/l
- · Melting point: 255 °C
- pH (50 g/l H/O, 25 °C) 7,0 8,5

Toxicological data: + LD 50 (oral, rat): 11200 mg/kg . WGK: 1

Safety:

· Poison class CH (Swiss): 5

Transport/storage:

- +LGK: 10-13
- + Disposal: 3

Tanic code 2915 12 00 00

Code Capacity SO03250250 250 g 🗋

Sodium hydrogen carbonate

Sodium bicarbonate NaHCO, • M = 84,01 g/mol

+ CAS [144-55-8]

• EC number: 205-633-8

Physical data: Spec. density: 2,22 g/cm³

- Bulk density: 1000 kg/m³
- · Solub. in water (20 *C): 95,5 g/l
- Melting point: 270 °C (decomposes)
- · Vapour pressure: (30 °C) 8,3 hPa

pH (50 g/l H₂O, 20 °C) ≤ 8,6 SO0130 Sodium hydrogen carbonate, HPLC grade

assay (acidimetric)	min. 99,5 %
identity (IR-spectrum)	passes test
insoluble matter	passes test

maximum absorbance of an aquecus solution (10%) in a 1,0 cm cell at	
wavelength.	absorbar
240 nm	0,1 AU
250 nm	0.04 AU
260 nm	0,02 AU
280 nm	0.01 AU

· WGK: 1

Toxicological data:

LD 50 (oral, rat): 4220 mg/kg

absorbance U.1 AU 0.04 AU 0.02 AU

Code	Capacity
SO01300250	250 g 🖯

Taric code: 2836.30.00.00

Safety:

· Poison class CH (Swiss): 5

Transport/storage:

·LGK: 10-13

· Disposal: 14

Solvents and Reagents

di-Sodium hydrogen phosphate dihydrate

Sodium monohydrogen phosphate,

- Sodium phosphate dibasic, Secondary sodium phosphate
- Na, HPO, 2H,O M = 177,99 g/mol
- · CAS [10028-24-7]
- EC number: 231-448-7
- Physical data:
- · Spec. density: 2,1 g/cm²
- Bulk density: 850 1000 kg/m³ · Solub. in water (20 °C): 93 g/l
- · Melting point: 92,5 °C (release of
- crystalline water)

56

• pH (50 g/l H/O, 20 °C) - 9,1 - 9,4

Toxicological data:

potassium (K).....

maximum absorbance of an aquecus

solution (10%) in a 1,0 cm cell at

. LD 50 (oral, rat): 17000 mg/kg (anhydrous substance) ·WGK:1

Safety:

max 0,001 %

max. 0,05 %

absorbance:

0,1 AU

0.06 AU

0.04 AU

0.02 AU

· Poison class CH (Swiss): 5

Tario code: 2835 22 00 00

Capacity

250 g ()

Transport/storage:

Code

SO03450250

· LGK: 10-13

· Disposal: 14

SO0345 di-Sodium hydrogen phosphate dihydrate, HPLC grade

assay (acidimetric)	min. 99,5 %
identity (IR-spectrum)	passes test
insoluble matter	passes test
pH (5%, HgO).	9,0 - 9,2
total N.	max. 0,001 %
chlorides (CI)	max. 0,001 %
sulfates (SO4)	max. 0,005 %
copper (Cu)	max. 0,0003 %
heavy metals (as Pb)	max. 0,001 %
iron (Fe)	max. 0,001 %

Sodium lauryl sulfate

Dodecyl sulfate sodium sait, SDS C., H., NaO, S • M = 288.38 g/mol

· CAS [151-21-3]

. EC number: 205-788-1

assay (complexometric,

pH (10%, HzO) ...

insoluble matter

- · Melting point: 204 207 *C
- · Flash point > 100 °C

SO0456 Sodium lauryl sulfate, for ion-pair chromatography

6,0 - 7,5

passes test

• pH (10 g/l H,O, 20 °C) 7,5 - 9,0

Toxicological data:

 LD 50 (oral, rat): 1288 mg/kg • WGK: 2

+ R: 22-36/38 + 8:46

Safety:

× Xn

· Poison class CH (Swiss): 4

Transport/storage:

+LGK: 10-13

- Taric code: 2920 90 10 90
- Code SO04560025 SO04560100

Tetrabutylammonium bromide

referred to anhydrous substance) min. 99 %

identity (IR-spectrum) passes test

loss on drying (120 °C)..... max. 2 %

TBAB, Tetra-n-butylammonium bromide

- C₁₀H₁₀BrN M = 322,38 g/mol
- · CAS [1643-19-2]
- EC number: 216-699-2

Physical data:

- · Bulk density: 700 kg/m³
- Solub. in water (20 °C): 600 g/l
- · Melting point: 100 103 *C
- +LGK: 10-13
 - · Disposal: 3

Toxicological data:

Transport/storage:

·WGK: 3

BR0200 Tetrabutylammonium bromide, HPLC grade

maximum absorbance of an aqueous

solution (10%) in a 1,0 cm cell at

assay (argentometric)	
identity (IR-spectrum)	Constantion and Constantion of Constant
nsoluble matter	

min. 99 %
passes test
passes test

maximum absorbance of an aqueous solution (10%) in a 1.0 cm cell at	
wavelength:	absorbance:
240 nm	0.04 AU
250 nm	0.03 AU
260 nm	0,02 AU

Code BR0200003

	Capacity
25	25 g 🗋

Taric code: 2923 90 00 90

absorbance;

0.1 AU

0.06 AU

0.04 AU

0.02 AU

Capacity 25 g () 100 g 🖯

wavelength

210 nm

280 nm

220 nm.

230 nm.

lead (Pb).

wavelength:

230 nm.....

250 nm

280 nm.....

320 nm.....

Physical data: · Spec. density: 1,1 g/cm² Bulk density: ~ 490 - 560 kg/m³ · Solub. in water (20 °C): - 150 g/l

Solvents and Reagents

Tetrabutylammonium chloride

C., H., CIN
 M = 277,93 g/mol

· CAS [1112-67-0] • EC number: 214-195-7

Physical data:

- · Density: 1 g/cm²
- · Solub. in water (20 °C): miscible
- · Melting point: 25 °C
- Flash point: 110 °C
- pH (100 g/l H,O, 20 °C) 5 8
- Toxicological data: • WGK: 3

absorbance:

0.05 AU

0.04 AU

0.03 AU

0,02 AU

+ R: 36/38

Transport/storage:

+LGK: 10-13

Tanio code: 2923 90 00 90

Capacity
10 g ()

TE0118 Tetrabutylammonium chloride, HPLC grade assay (argentometric, referred to anhydrous substance) min 99 % identity (IR-spectrum) passes test insoluble matter passes test water (K.F.) max, 4 %

• EC number: 218-147-6	 Solub. in water (20 °C): miscible pH (20 °C) 7,4 - 7,6 		
onium hydroxide, solution 0,1 mol	VI, buffered with phosphates, HPLC	Teric code: 292.	3 90 00 90
		Code TE01150250 TE01151000	Capacity 250 ml 0 1 I 0
ium hydrogen sulfate			
• C ₁₃ H ₂ NO ₂ S • M = 339,54 g/mol • CAS [32503-27-8] • EC number: 251-068-5	Physical data: • Bulk density: 650 kg/m ¹ • Solub. in water (20 °C): freely soluble • Metting point: 169 - 172 °C • pH (50 g/l HLO, 20 °C) 2.1	Toxicological data: •WGK: 3 Transport/storage: •LGK: 10-13	
		in a 1 cm cell at 254 nm max. 0,02 AU ium hydrogen sulfate • C ₁₀ H ₂ NO ₂ S • M = 339,54 g/mol • CAS [32503-27-8] • EC number: 251-068-5 • Bulk density: 650 kg/m ¹ • Solub. in water [20 °C]: theely soluble • Metting point: 169 - 172 °C	Y.4 - 7,6 absorbance of a 0,005 M solution in a 1 cm cell at 254 nm. max. 0,02 AU Code TE01150250 TE01151000 ium hydrogen sulfate • Cr,He,NO,S • M = 339,54 g/mol • CAS [32503-27-6] • EC number: 251-068-5 Physical data: • Bulk density: 650 kg/m ¹ • Solub. in water (20 °C): theely soluble • Meting point: 169 - 172 °C Toxicological data: • WGK: 3

maximum absorbance of an aqueous

solution (10%) in a 1,0 cm cell at

wavelength:

260 nm

220 nm.

230 nm. 250 nm.

TE0120 Tetrabutylammonium hydrogen sulfate, for ion-pair chromatography

assay (acidimetric).	m
identity (IR-spectrum)	pa
insoluble matter	pa

Tetrabutylammonium iodide

nin. 99 % asses test asses test

Physical data:

Toxicological data: . LD 50 (oral, rat): 1990 mg/kg

WGK: 2

· Solub. in water (20 °C): slightly soluble

· Melting point: 143 - 146 *C

maximum absorbance of an aqueous solution (10%) in a 1,0 cm cell at wavelength: absorbance: 210 nm. 0.05 AU 220 nm. 0.04 AU 0.03 AU 230 nm. 0.02 AU 260 nm.

Safety:

• R: 22

· S: 45

Xn ×

Transport/storage: +LGK: 10-13

Code

TE01200010

TE01200100

+ Disposal: 3

 C_H_IN • M = 369,38 g/mol · CAS [311-28-4] • EC number: 208-220-5

TE0130 Tetrabutylammonium iodide, HPLC grade

assay (argentometric)	min. 99 %
identity (IR-spectrum)	passes test
insoluble matter	passes test

maximum absorbance of a solution in acetonitrile (10%) in a 1,0 cm cell at wavelength: absorbance: 290 nm.... 0.1 AU 300 nm. 0.05 AU 320 nm 0,02 AU

Tario code: 2923 90 00 90

Taric code: 2923 90 00 90

Capacity

10 g ()

100 g 🖯

Capacity Code TE01300010

10 g ()

Tetrachloroethene

Parchioroethylana, Tetrachloroethylana,

- Ethylene tetrachioride
- C,Cl, M = 165,82 g/mol . CAS [127-18-4]
- EC number: 204-825-9

Physical data:

- · Density: 1,62 g/cm3
- · Solub. in water (20 °C): 0,2 g/l
- · Melting point -22 °C
- · Boiling point: 121 °C
- · Vapour pressure: (20 °C) 18 hPa
- Refraction index: (n 20 *C/D) 1,5053 Viscosity: (20 °C) 0,89 mPas.
- Dielectric const.: (20 °C) 2,4
- Saturation conc.: (20 °C) 126 g/m²

Toxicological data:

. LD 50 (oral, rat): 2629 mg/kg ·WGK: 3

Safety:

- EC Index no.: 602-028-00-4
- ·R: 40-51/53
- · S: 23.2-51-36/37-61 · Poison class CH (Swiss): 4

- Transport/storage: + ADR: 6.1 T1 III UN 1897
- + IMDG: 5.1 III UN 1897
- · IATA/ICAO: 6.1 III UN 1897

Taric code 2903 23 00 00

Capacity

110

- · PAX: 605
- .CAO: 612
- +LGK: 10-13
- + Disposal: 2

Code

TE01271000

TE0127	Tetrachloroethene.	Multisolvent®	HPLC grade	UV-VIS
	ren normon o'etherre.	THE WEIGHT WITH	111 20 31000	01 110

assay (G.C.)	min. 99,9 %
identity (IR-spectrum)	passes test
density (20%4*)	1.621 - 1.623
appearance	clear
colour (Hazen)	max. 10
acidity	max. 0,0005 meg/g
aluminium (Al).	max. 0,00001 %
barium (Ba).	max 0,000001 %
boron (B)	max 0,000002 %
cadmium (Cd)	max. 0,000001 %
calcium (Ca)	max. 0,00003 %
chromium (Cr)	max 0,000002 %
cobalt (Co)	max 0,000002 %
copper (Cu)	max. 0,000002 %
iron (Fe)	max. 0,000002 %
lead (Pb)	max. 0,00001 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max. 0,000001 %

-		
nickel (Ni)	max. I	0,000002 %
tin (Sn)	max. I	0,00001 %
zine (Zn)	max. I	0,000001 %
non-volatile matter	max. I	0,0003 %
water (K.F.).	max.	0,01 %
min, transmission/max, absorbance		
in a 1,0 cm cell at		
wavelength:	T(%)	A (AU)
290 nm	10.96	1,000 AU
295 nm	50.%	0.301 AU
	80 %	0.097 AU
300 nm		
300 nm	85 %	0.071 AU

Microfiltered through membranes of pore diameter 0,22 µm

Tetradecyltrimethylammonium bromide

в

Mynistyltrimethylammonium bromide, N.N. Physical data: N-Trimethyl-1-tetradecanammonium bromide

- C, H, BrN M = 316,08 g/mol
- · CAS [1119-97-7]
- EC number: 214-291-9

E C

Transport/storage:

- ADR: 8 C10 III UN 1759
- + IMDG: 8 III UN 1759
- + IATA/ICAO: 8 III UN 1759
- · PAX: 822 .CAO: 823
- + LGK: 8

Taric code: 2923 90 00 90

Code	Capacity
BR02010025	25 g ()

BR0201 Tetradecyltrimethylammonium bromide, HPLC grade assay (argentometric) min. 96 % ed.

identity (IR-spectrum)	passes test
insoluble matter	passes test

maximum absorbance of an aqueous solution (10%) in a 1,0 cm cell at wavelength: 240 nm 250 nm..... 260 nm

absorbance:
0,04 AU
0.03 AU
0.02.411

· Solub. in water (20 °C): 100 g/l · Melting point: 245 - 250 °C

- Bulk density: 600 kg/m³

Safety:

- ·R:34

· S: 26-36/37/39-45

0.02 AU

Transport/storage:

+ ADR: 3 F1 II UN 2056

. IMDG: 3 II UN 2056

+ PAX: 305

+ GAO: 307

Tetrahydrofuran

THF, Tetramethylene oxide, Oxolane • C,H,O • M = 72,11 g/mol

- + CAS [109-99-9]
- EC number: 203-726-8

Physical data:

- · Density: 0,89 g/cm³
- · Solub. in water (20 °C): miscible
- · Melting point -108,5 °C
- · Boiling point: 65 66 *C · Flash point: -21,5 °C
- Ignition temp.: 215 °C
- · Vapour pressure: (20%C) 173 hPa
- Refraction index: (n 20 °C/D) 1,407
- · Viscosity: (20 °C) 0.47 mPas.
- Dipolar moment: (20 °C) 1,63 Debye
- Dielectric const.: (20 °C) 7,4
- Saturation conc.: (20 °C) 557 g/m²
- · Expl. limit (upper): 12,4 Vol%

max 0,000001 %

· Expl. limit (lower): 1,5 Vol%

· pH (200 g/l H,O, 20 *C) 7 - 8

Toxicological data:

- + LD 50 (oral, rat): 1650 mg/kg • MAK: 50 ml/m², 150 mg/m³
- · WGK: 1

Safety:

. EC Index no.: 603-025-00-0

·R: 11-19-36/37

- · 8: 16-29-33 · VbF class: B
- · Poison class CH (Swiss): 3

. LGK: 3 A · Disposal: 1

Tanic code: 2932 11 00 90

· IATA/ICAO: 3 II UN 2056

TE0228 Tetrahydrofuran, Multisolvent® GPC grade ACS, stabilized with 250 ppm of 2,6-Di-tert-			Tario code: 2932 11 00 90		
butyl-4-methylphenol assay (G.C.)	min. 99,9 %	cobelt (Co) copper (Cu) iron (Fe). lead (Pb). magnesem (Mg) manganese (Mn) nickel (Ni).	max: 0,000002 % max: 0,000002 % max: 0,000002 % max: 0,00001 % max: 0,000001 % max: 0,000001 %	Code TE02281000 TE02282500 TE02284000 TE0228007E TE02280255	Capacity 110 2,510 410 710 251⊟

zinc (Zn)

tin (Sn)

non-volatile matter

water (K.F.)

peroxides (as HgO2). max. 0,005 %

TE0225 Tetrahydrofuran, HPLC grade, without stabilizer

max. 0,000002 %

assay (G.C.)	min. 99,9 %
identity (IR-spectrum)	passes test
density (20%4*)	0,887 - 0,889
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
non-volatile matter	max. 0,0003 %
water (K.F.)	max. 0,02 %

cadmium (Cd)...... max. 0,000001 %

calcium (Ca) max 0,00003 %

chromium (Cr)...... max. 0,000002 %

berium (Ba).....

boron (B)

min. transmission/max. absorbance in a 1.0 cm cell at			Code	Capacity
wavelength:	T(%)	A (AU)	TE02251000	110
230 nm.	20 %	0,699 AU	TE02252500	2,510
243 nm	50 %	0,301 AU		
273 nm	90 %	0,046 AU		

max. 0,00001 %

max. 0,0003 %

max 0.02 %

max. 0.000001 %

Microfiltered through membranes of pore diameter 0,22 µm

Toluene

Methylbenzene, Phenylmethane

- C,H, M = 92,14 g/mol
- · CAS [108-88-3]
- . EC number: 203-625-9

- Physical data:
- · Density: 0,87 g/cm³
- Solub. in water (20 °C): 0,52 g/l
- · Melting point: -95 *C
- · Boiling point: 111 *C
- · Flash point: 4 °C
- · Ignition temp.: 535 °C · Vapour pressure: (20 *C) 29 hPa
- Viscosity: (20 °C) 0,58 mPas.
- · Dipolar moment: (20 °C) 0,36 Debye
- Dielectric const.: (25 °C) 2,3
- Saturation conc.: (20 °C) 110 g/m³
- · Expl. limit (upper): 8 Vol%

· Expl. limit (lower): 1,2 Vol%

Toxicological data:

- · LD 50 (oral, rat): 638 mg/kg
- MAK: 50 ml/m², 190 mg/m³
- ·WGK:2

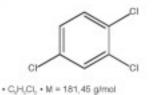
Safety:

- · EC Index no.: 601-021-00-3
- ·R: 11-38-48/20-63-65-67
- 8:23.2-36/37-62
- + VbF class: Al
- · Poison class CH (Swiss): 4
- Transport/storage: · ADR: 3 F1 II UN 1294
- + IMDG: 3 II UN 1294
- + IATA/ICAO: 3 II UN 1294
- · PAX: 305
- · CAO: 307 + LGK: 3 A
- + Disposal: 1

TO0085 Toluene, Multisolvent® HPLC grade ACS ISO UV-VIS

	-
assay (G.C.)	min. 99,9 %
identity (IR-spectrum)	passes test
density (20%4*)	0,863 - 0,868
appearance	clear
colour (Hazen)	max. 10
acidity	max. 0,0002 meg/g
alkalinity	max. 0,0002 meg/g
chlorides (CI)	max. 0,00005 %
sulfates (SO4)	max. 0,0001 %
aluminium (Al).	max 0,00001 %
antimony (Sb)	max. 0,000002 %
arsenic (As)	max 0,000002 %
barium (Ba).	max. 0,000001 %
beryllium (Be)	max 0,000002 %
bismuth (Bi).	max. 0,00001 %
boron (B)	max. 0,000002 %
cadmium (Cd)	max 0,000001 %
calcium (Ca)	max 0,00003 %
chromium (Cr)	max. 0,000002 %
cobalt (Co)	max 0,000002 %
copper (Cu)	max. 0,000002 %
gallium (Ga)	max 0,000002 %
gold (Au)	max. 0,00001 %
indium (In).	max. 0,000002 %
iron (Fe)	max. 0,00001 %
lead (Pb)	max 0,00001 %
lthium (Li).	max. 0,000002 %
magnesium (Mg)	max. 0,00001 %
manganese (Mn)	max. 0,000001 %
molybdenum (Mo)	max. 0,000005 %

nickel (NI)	max. I	0,000002 %
platinum (Pt).	max. I	0,000002 %
silver (Ag)	max.	0,000002 %
thallium (TI)	max. I	0,000005 %
tin (Sn)	max. I	0,00001 %
titanium (Ti)	max, I	0,000005 %
vanadium (Va)	max. I	0,000005 %
zinc (Zn)	max. I	0,000001 %
zirconium (Zr).	max. I	0,000002 %
benzene (G.C.)	max. I	0,005 %
sulphur compounds (as S)	max. I	0,003 %
thiophene	max. I	0,0001 %
substances darkened by H2SO4	passe	is test
non-volatile matter	max. I	0,0002 %
water (K.F.)	max. I	0,02 %
liquid chromatography suitability		
absorbance	passe	is test
min, transmission/max, absorbance		
in a 1.0 cm cell at		
wavelength.	T(%)	A (AU)
285 nm	10.95	1.000 AU
292 nm	50.%	0,301 AU
305 nm.	80 %	0.097 AU
317 nm	90 %	0,048 AU


301 AU 097 AU 0.046 AU 98 % 0.009 AU Taric code: 2902 30 00 00

Code	Capacity
TC00851000	110
TC00852500	2,510
TC00854000	410
TO0085007E	710
TC0085025S	2518

Microfiltered through membranes of pore diameter 0,22 µm

350 nm.....

1,2,4-Trichlorobenzene

· CAS [120-82-1]

• EC number: 204-428-0

Physical data:

- · Density: 1,45 g/cm³ Solub. in water (20 *C): 0,049 g/l
- Melting point: 17 °C
- · Boiling point: 213,5 °C
- · Flash point: 99 °C
- · Ignition temp.: 571 °C
- Vapour pressure: (20 °C) 1,3 hPa
- Saturation conc.: (20 °C) 2 g/m³
- · Expl. limit (upper): 6,6 Vol %
- · Expl. limit (lower): 2,5 Vol %
- TR0120 1,2,4-Trichlorobenzene, HPLC grade

Toxicological data:

. LD 50 (oral, rat): 756 mg/kg + WGK: 3

- Safety:
- ·R: 22-36/37/38-51/53
- · S. 26-45-61
- · Poison class CH (Swiss): 4

•	LGK: 1	0	13
	Dispos	al	2

· IATA/ICAO: 6.1 III UN 2321

• Disp

· PAX: 611

+ CAO: 618

Transport/storage: + ADR: 6.1 T1 III UN 2321

+ IMDG: 6.1 III UN 2321

× Xn ¥2 ٦N

Taric code: 2903 69 90 90

assay (G.C.). identity (IR-spectrum).	min. 99 % passes test	min, transmission/max, absorbance in a 1,0 cm cell at			Code	Capacity
acidity	max. 0,0002 meg/g	wavelength:	T(%)	A (AU)	TR01201000	110
alkainity	max. 0,0002 meg/g	310 nm	60 %	0,222 AU	TR01202500	2,510
sulfated ash	max. 0,001 %	315 nm	80 %	0.097 AU		
water (K.F.).	max. 0,01 %	385 nm	98 %	0,009 AU		

Microfiltered through membranes of pore diameter 0,22 µm

Triethylamine

N,N-Diethylethanamine

- C,H.,N M = 101,19 g/mol
- · CAS [121-44-8]

assay (acidimetric)...

density (20%4*).....

EC number: 204-469-4

· Melting point: -115 °C

· Boiling point: 90 °C · Flash point: -11 °C

min. 99.7 %

passes test

0,726 - 0,729

Physical data:

· Density: 0,73 g/cm³

- · Ignition temp.: 215 °C
- · Vapour pressure: (20 *C) 69 hPa

Solub. in water (20 °C): 133 g/l

- Saturation conc.: (20 °C) 256 g/m³
- · Expl. limit (upper): 9,3 Vol%
- · Expl. limit (lower): 1,2 Vol%
- · pH (100 g/I H,O, 15 °C) 12,7

Toxicological data:

- · LD 50 (oral, rat): 460 mg/kg
- MAK: 1 ml/m³, 4,2 mg/m³
- · WGK: 1

Safety:

heavy metals (as Pb)

UV absorbance at 285 nm....

non-volatile matter

water (K.F.).

iron (Fe).....

- + EC Index no.: 612-004-00-5
- ·R: 11-20/21/22-35 · S: 3-16-26-29-36/37/39-45
- · VbF class: B

Toxicological data:

· R: 20-35-52/53

• EC Index no.: 607-091-00-1

· Poison class CH (Swiss): 3

• 8: 9-26-27-28.1-45-61

WGK: 2

Safety:

· Poison class CH (Swiss): 3

max 0.0001 %

max 0.0001 %

max 0.01 AU

max. 0.001 %

5

Transport/storage:

 IMDG: 8 | UN 2699 + IATA/ICAO: 8 I UN 2699

+ PAX: 807

· CAO: 809

+ LGK: 8 B

+ Disposal: 4

ADR: 8 C3 I UN 2699

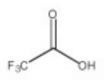
max 0.1 %

- Transport/storage:
- ADR: 3 FC II UN 1296
- + IMDG: 3 II UN 1296
- + IATA/ICAO: 3 II UN 1296
- PAX: 305
- . CAO: 307
- + LGK: 3 A
- + Disposal: 5
 - Tario code: 2921 19 10 00

Code	Capacity
TR02181000	110
TR02182500	2,510

Taric code: 2915 90 80 90

AC31430100 100 ml 0


Capacity

chlorides (CI)	max.	0,001	%
sulfates (SO4)	max.	0,001	96

identity (IR-spectrum)

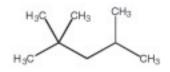
TR0218 Triethylamine, HPLC grade

Trifluoroacetic acid

Perfluoroacetic acid, TFA

- CF_COOH M = 114,02 g/mol
- · CAS [76-05-1]
- EC number: 200-929-3
- · Density: 1,48 g/cm³ · Solub. in water (20 °C): freely miscible
- · Melting point: -15 °C

Physical data:


- · Boiling point: 72 °C
- · Vapour pressure: (20 °C) 11 hPa
- · Viscosity: (20 °C) 0,91 mPas-
- Dielectric const : (25 °C) 42.1
- Evap. heat: (72 °C) 292 KJ/kg
- pH (20 °C) < 1

NEW AC3143 Trifluoroacetic acid, buffer substance, HPLC grade

assay (acidimetric)	min. 99,5 %
gradient elution	passes test
water (K.F.)	max 0,05 %

maximum absorbance in a 1,0 cm cell at wavelength.	absorbano
280 nm	UA 9.0
270 nm	0,1 AU
280 nm.	0.05 AU
290 nm	0,04 AU
300 nm.	0.03 AU
320 nm	0,025 AU

2,2,4-Trimethylpentane

isooctane, isobuty/trimethylmethane, iso-Octane

IS0156 2,2,4-Trimethylpentane, HPLC grade

• C,H, • M = 114,26 g/mol

identity (IR-spectrum).....

water (K.F.).....

density (20*/4*).....

non-volatile matter

· CAS [540-84-1]

assay (G.C.)

acidity ... alkalinity

• EC number: 208-759-1

Physical data:

min. 99,5 %

passes test

0.691 - 0.692

max 0,0003 %

max. 0,01 %

max 0.0002 meg/g

max. 0,0002 meg/g

- · Density: 0,69 g/cm² Solub. in water (25 *C): 0,56 mg/l
- Melting point: -107 °C
- · Boiling point: 99 °C
- Flash point -12 °C
- · Ignition temp.: 410 °C
- · Viscosity: (22 *C) 0,51 mPas
- · Dielectric const.: (20 °C) 1,9
- Evap. heat: (99 °C) 334 KJ/kg
- Saturation conc.: (20 °C) 239 g/m²
- · Expl. limit (upper): 6 Vol% · Expl. limit (lower): 1 Vol96 · pH ~ 7

Toxicological data:

- LD 50 (oral, rat): > 2000 mg/kg
- MAK: 500 mi/m³, 2400 mg/m³ ·WGK:1

min. transmission/max. absorbance

228 nm

Microfiltered through membranes of pore diameter 0.22 µm

- Safety: EC Index no.: 601-009-00-8.
- ·R: 11-38-50/53-65-67

Taric code: 2901 10 00 00

		Code	Capacity
T(%)	A (AU)	IS01561000	110
	0,699 AU	1801562500	2,510
	0,301 AU	IS0156007E	710
90 %	0,046 AU	1801560258	2518

e.

٨ X · S: 9-16-29-33-46-60-61-62

Code

- + VbF class: Al
- Poison class CH (Swiss): 5

Transport/storage:

- + ADR: 3 F1 II UN 1262
- · IMDG: 3 II UN 1262
- · IATA/ICAO: 3 II UN 1262
- + PAX: 305
- + CAO: 307
- . LGK: 3 A
- · Disposal: 1

in a 1.0 cm cell at

wavelength:

205 nm

209 nm.

- Vapour pressure: (20 °C) 51 hPa

Water

- H,O
- M = 18,02 g/mol
- · CAS [7732-18-5] • EC number: 231-791-2
- Physical data:
- · Density: 1,00 g/cm3
- · Melting point: 0 *C
- · Boiling point: 100 *C
- Vapour pressure: (20 °C) 23 hPa
- Viscosity: (20 °C) 0,95 mPas
- Dipolar moment: (20 °C) 1,85 Debye
- Dielectric const : (20 °C) 80,2
- · Evap. heat: (20 °C) 2253 KJ/kg
- pH (20 °C) 7

Toxicological data:

WGK: 0

Transport/storage: ·LGK: 10-13

· Poison class CH (Swiss): F

Taric code: 2851 00 10 00

Safety:

NEW AG0006 Water, LC-MS

non-volatile matter	max 0,0001 % max 0,000001 % max 0,000001 % max 0,00001 % max 0,00001 %	silver (Ag) sodium (Na) tin (Sn) zinc (Zn). suitability for use in LC-MS	max 0,00001 % max 0,00001 % max 0,00001 % max 0,00001 % passes test	Code AG00061000 AG00062500	Capacity 110 2,510
aluminium (Al)	max 0,00005 %	min. transmission/max. absorbance			
barium (Ba)	max. 0,00001 %	in a 1,0 cm cell at			
cadmium (Cd)	max. 0,000005 %	wavelength:	T(%) A (AU)		
calcium (Ca)	max. 0,00001 %	200 nm.	95 % 0.022 AU		
chromium (Cr)	max. 0,000002 %	230 nm	99 % 0,004 AU		
cobalt (Co)	max. 0,000002 %				
copper (Cu)	max. 0,000002 %	gradient grade (210 nm)			
iron (Fe)	max. 0,00001 %	maximum peak absorbance	max. 0,005 AU		
lead (Pb)	max. 0,00001 %	gradient grade (254 nm)			
magnesium (Mg)	max. 0,00001 %	maximum peak absorbance	max. 0,001 AU		
manganese (Mn)	max. 0,000002 %				
nickel (Ni)	max. 0,000002 %	microfiltered through membranes			
potassium (K)	max. 0,00001 %	of pore diameter 0,22 µm			

gradient elution: maximum absorption of

at 210 nm.

at 254 nm.

microfiltered through membranes of pore diameter 0,22 µm

min transmission/max absorbance

wavelength:

254 nm.....

microfiltered through membranes of pore diameter 0,22 µm

210 nm

the largest eluted peaks:

AG0001 Water, gradient HPLC grade

non-volatile matter	max. 0,0001 %
conductivity (25 °C)	max, 1 µS/cm
chlorides (CI)	max. 0.00002 %
nitrates (NO ₃)	max. 0,00003 %
sulfates (SO4)	max. 0.0001 %
lead (Pb)	max. 0,00001 %
microbiologycal assays	passes test

Water with 0,1% acetic acid

NEW AG0009 Water with 0,1% acetic acid, LC-MS

acetic acid content (wv) pH (20 °C) magnesium (Mg) potassium (K) sodium (Na) suitability for use in LC-MS	0.093 - 0,107 % 3,2 - 3,4 max 0,00005 % max 0,00005 % max 0,00005 % max 0,0002 % passes test
gradient grade (210 nm) mæimum peak absorbence gradient grade (254 nm) mæimum peak absorbence	так. 0,05 AU так. 0,01 AU

in a 1.0 cm cell at wavelength: T(%) A (AU) 210 nm 20 % 0,699 AU 230 nm..... 75 % 0.125 AU 99 % 0.004 AU 254 nm microfiltered through membranes of pore diameter 0,22 µm

0.01 AU

0,001 AU

Taric code 3822 00 00 00

Taric code 2851 00 10 00

Capacity

110

2,510

Code

AG00011000

AG00012500

Code	Capacity
AG00091000	110

Water with 0,1% ammonium acetate

NEW AG0010 Water with 0,1% ammonium acetate, LC-MS

ammonium acetate content (w/v)	0.093 - 0.107 %
pH (20 °C)	8,2-6,4
calcium (Ca)	max. 0,00005 %
magnesium (Mg)	max 0,00005 %
potassium (K)	max. 0,00005 %
sodium (Na)	max. 0,0002 %
suitability for use in LC-MS	passes test
gradient grade (210 nm)	
maximum peak absorbance	max. 0,01 AU
gradient grade (254 nm)	
maximum peak absorbance	max, 0,01 AU

min. transmission/max. absorbance in a 1,0 cm cell at T(%) A (AU) 20 % 0,699 AU 230 nm..... 90 % 0,046 AU

99 % 0.004 AU

Taric code: 3822 00 00 00

Code	Capacity
AG00101000	110

Water with 0,1% formic acid

NEW AG0008 Water with 0,1% formic acid, LC-MS

formic acid content (v/v)	0,093 - 0,107 %
pH (20 °C)	2,6 - 2,8
calcium (Ca)	max. 0,00006 %
magnesium (Mg)	max. 0,00005 %
potassium (K)	max. 0,00005 %
sodium (Na)	max. 0,0002 %
suitability for use in LC-MS	passes test
gradient grade (210 nm)	
maximum peak absorbance gradient grade (254 nm)	max. 0,05 AU

maximum peak absorbance...... max. 0,01 AU

in a 1,0 cm cell at wavelength:	T(%)	A (AU)
210 nm	5 %	1,301 AU
230 nm	45 %	0,347 AU
254 nm	99 %	0.004 AU

of pore diameter 0,22 µm

Tario code: 3822 00 00 00

Code	Capacity
AG00081000	110

Water with 0,1% trifluoroacetic acid

NEW AG0007 Water with 0,1% trifluoroacetic acid. LC-MS

trifluoroacetic acid content (wV)	0.093 - 0.107 % 1.8 - 2.0 max. 0.00005 % max. 0.00005 % max. 0.00005 % passes test
gradient grade (210 nm) maximum peak absorbance gradient grade (254 nm)	max. 0,05 AU
maximum peak absorbance	max. 0,01 AU

 min. transmission/max. absorbance

 in a 1,0 cm cell at

 wavelength:
 T(%) A (AU)

 210 nm.
 25 % 0,602 AU

 230 nm.
 85 % 0,071 AU

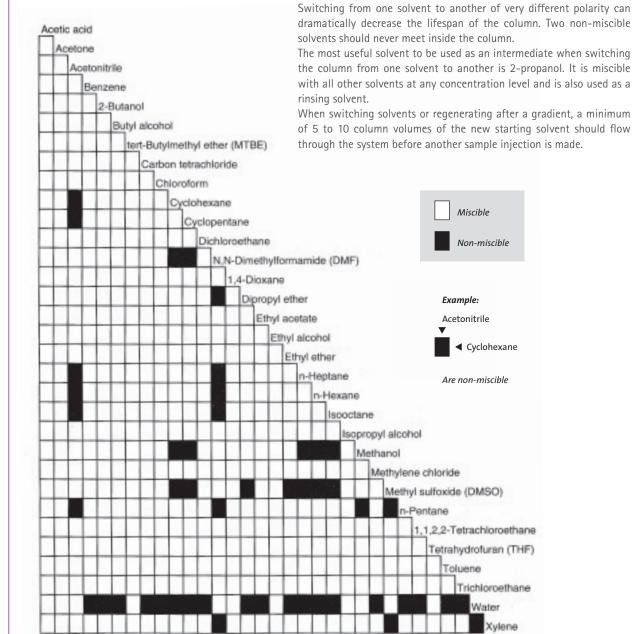
 254 nm.
 99 % 0,004 AU

microfiltered through membranes of pore diameter 0,22 µm

Tanic code 3822 00 00 00

Code	Capacity
AG00071000	110

Several chemical and physical properties should be taken in account when selecting the solvent(s) to be used as mobile phase in HPLC. Polarity, miscibility, elution strength and, UV cutoff are some of these parameters. We have compiled the values of the most common solvents for your convenience. See tables below.


	Refractive I index	UV cutoff	Viscosity (cP) at 20°C	Hildebrand solubility parameter	Elution	Elution strenght (E0) Al୍ସଠ୍ୱ	Polarity index according to Sneider	BP (°C)
					strenght (E0) SiO ₂			
Acetic acid	1.372	210	1.1-1.26	12.4		Large	6.2	117.9
Acetone	1.359	330	0.32	9.6	0.47-0.53	0.56-0.58	5.4	56.3
Acetonitrile	1.344	190	0.37	11.7	0.5	0.55-0.65	6.2	81.6
Benzene	1.501	280	0.65	9.2	0.25	0.32	3.0	80.1
Benzyl alcohol			5.8				5.5	205.5
1-Butanol							3.9	117.2
2-Butanol	1.395							
t-Butanol	1.385							
2-Butanone	1.377							
Butyl acetate	1.392							
t-Butyl methyl ether	1.370	210	0.27		0.35		2.9	55.2
Carbon tetrachloride	1.466	265	0.97	8.6	0.12	0.18	1.7	76.5
Chloroform	1.443	245	0.57	9.2	0.26	0.36-0.4	3.4-4.4	61.2
Cyclohexane	1.427	200	0.98	8.2	0.04	0.04	0.0	80.7
Cyclohexanone			2.24				4.5	155.7
Dichloroethane							3.7	83.4
Dichloromethane	1.424	232	0.44	9.6	0.32	0.4	3.4	40
Di-isopropylamine	1.390							
N,N-Dimethyl formamide	1.431	268	0.90-0.92	11.5		6.4	153	
Dimethyl sulfoxide	1.478		2.24	12.8	0.41	0.62	6.5	189
1.4-Dioxane							4.8	101
Ethanol	1.361	205-210	1.2	12	0.68	0.88	5.2	78.3
Ethyl acetate	1.370	256	0.46-0.47	9.1	0.38-0.48	0.58	4.3	77.1
Ethyl ether	1.352							
Ethylene dichloride	1.445	230	0.79	9.7	0.38	0.49	3.7	83.5
Formamide	1.450	210	3.3-3.76	017	0.00	0110	7.3	210.5
n-Hexane	1.375	195	0.313	7.3	0.03	0.01	0.0	68.9
Isopropyl ether	1.368	220	0.33-0.37	7.3	0.22	0.28	2.2	68.3
Methanol	1.329	205	0.6	13.7	0.73	0.95	6.6	64.7
Methyl ethyl ketone	1.379	330	0.43	9.3	0.39	0.51	4.5	80
1-Propanol		000	2.3	010	0.00	0.01	4.3	97.2
2-Propanol	1.38	210	2.35			0.82	4.3	82.4
Pyridine	1.510	305-330	0.94	10.7		0.71	5.3	115.3
Tetrahydrofuran	1.408	212-230	0.55	9.1	0.35	0.45	4.2	66
Toluene	1.496	285	0.59	8.9	0.23	0.29	2.3	101.6
Triethylamine	1.401	200	0.38	010	5120	0120	1.8	89.5
Trifluoroacetic acid	1.283		0100					0010
2,2,4-Trimethylpentane	1.404	197-210	0.5	7	0.01	0.01	0.4	99.2
Water	1.333	180	1	21	5101	Large	9.0	100
p-Xylene		.00	0.7			Large	2.4	138

Solvents sorted by elution strenght (Eo) Al₂O₃

	Refractive index	UV cutoff	Viscosity (cP) at 20°C	Hildebrand solubility	Elution strenght	Elution strenght	Polarity index according to	BP (°C)
				parameter (E0) SiO,	(E0) SiO ₂	(E0) Al ₂ O ₃	Sneider	
2,2,4-Trimethylpentane	1.404	197-210	0.5	7	0.01	0.01	0.4	99.2
n-Hexane	1.375	195	0.313	7.3	0.03	0.01	0.0	68.9
Cyclohexane	1.427	200	0.98	8.2	0.04	0.04	0.0	80.7
Carbon tetrachloride	1.466	265	0.97	8.6	0.12	0.18	1.7	76.5
Isopropyl ether	1.368	220	0.33-0.37	7.3	0.22	0.28	2.2	68.3
Toluene	1.496	285	0.59	8.9	0.23	0.29	2.3	101.6
Benzene	1.501	280	0.65	9.2	0.25	0.32	3.0	80.1
Chloroform	1.443	245	0.57	9.2	0.26	0.36-0.4	3.4-4.4	61.2
Dichloromethane	1.424	232	0.44	9.6	0.32	0.4	3.4	40
Tetrahydrofuran	1.408	212-230	0.55	9.1	0.35	0.45	4.2	66
Ethylene dichloride	1.445	230	0.79	9.7	0.38	0.49	3.7	83.5
Methyl ethyl ketone	1.379	330	0.43	9.3	0.39	0.51	4.5	80
Acetonitrile	1.344	190	0.37	11.7	0.5	0.55-0.65	6.2	81.6
Acetone	1.359	330	0.32	9.6	0.47-0.53	0.56-0.58	5.4	56.3
Ethyl acetate	1.370	256	0.46-0.47	9.1	0.38-0.48	0.58	4.3	77.1
Dimethyl sulfoxide	1.478		2.24	12.8	0.41	0.62	6.5	189
Pyridine	1.510	305-330	0.94	10.7		0.71	5.3	115.3
2-Propanol	1.38	210	2.35			0.82	4.3	82.4
Ethanol	1.361	205-210	1.2	12	0.68	0.88	5.2	78.3
Methanol	1.329	205	0.6	13.7	0.73	0.95	6.6	64.7
Acetic acid	1.372	210	1.1-1.26	12.4		Large	6.2	117.9
Water	1.333	180	1	21		Large	9.0	100

Miscibility chart

Selection of starting solvent

The starting solvent or blend selected for a given separation can be chosen by matching the relative polarity of the solvent to that of the sample. Once the run is performed:

1. If the sample appears at the solvent front then the solvent is too polar to allow the adsorbent to retard the sample. Use a solvent of lower polarity.

2. If the sample does not appear within a reasonable timeframe, use a solvent of higher polarity.

For a better understanding of formulas related to the terms below, see the figures at the end of the glossary.

Adsorption chromatography

Relies on the adsorption process to effect separation. Also called liquidsolid chromatography. Molecules are reversibly bonded to the stationary phase as the result of dipole-dipole interactions. Liquid-solid adsorption chromatography was widely used to separate polar, non-ionic organic compounds until the introduction of partition chromatography.

Affinity chromatography

Relies on selective binding of the analyte to specific ligands coupled to a solid support or carrier. The molecules that bind to the ligand are retained, and then released in a second step in a purified state.

Analyte

Compound of interest that is determined by means of an analytical method.

Band

Mobile phase zone that contains one analyte, inside the column.

Band broadening

Effect of spreading experienced by the chromatographic band as it moves through the column. There are three causes of band broadening (eddy diffusion, longitudinal diffusion and slow mass transfer).

Baseline

Constant detector signal due to the background level of the instrument.

Bonded phase

Stationary phase chemically bonded to a support (traditionally silica). Alkyl, amino, nitrile or phenyl groups are common bonded phases.

Capacity factor (k')

Measure of the position of a sample peak in the chromatogram. Specific for a given substance and condition. $k'=(t_g-t_o)/t_o$

Column

Tube with a polished inner surface and end fittings at both ends where the stationary phase is packed. The chromatographic separation occurs inside the column. Usually made of stainless steel.

Dead time (t_o)

Time required by an inert compound to migrate from the injection point to the column end with no interaction with the stationary phase.

Detection limit

Refers to the amount of sample that produces a signal that is twice the noise level.

Detector

Instrument connected to the end of the column that continuously monitors some physical property of the column effluent.

Eddy diffusion

Undesired migration of the analytes inside the packed column due to the lack of packing homogeneity, which produces peak broadening (also see Van Deemter equation).

Efficiency

Measure of the column quality. Efficiency is quantitatively expressed as the number of theoretical plates: a higher number of theoretical plates indicates a more efficient column.

Eluent

Mobile phase.

Endcapping

Procedure applied mainly to reverse phase packings to cover the maximum number of free silanol sites by adding a small silylating agent. Done to eliminate undesirable polar interactions between basic analytes and silanol sites.

End fitting

Fitting at the end of the column that connects it to the injector or

detector. Contains the frit, a small sieve that prevents packing material from coming out of the column.

External standard

Analytical method used to quantify an unknown sample by comparison to different concentration solutions of a standard. The standard is the same compound as the unknown.

Flow rate

Quantitatively describes the movement of fluid along a flow path, most often expressed in ml/min (milliliters per minute) for typical liquid chromatography applications.

Frit

Small sieve contained by both column end fittings to prevent both small particles in the mobile phase from coming into the column and the packing material from coming out from the column. Frits are made of stainless steel or polymeric materials such as PEEK.

Fronting

Non-Gaussian peak shape where the front part tapers in advance of the rest of the peak. Fronting is the opposite of TAILING. A fronting peak has a peak symmetry value < 1.

Gaussian curve

Symmetrical bell-shaped curve. Assumed to be "perfect" in most chromatography theory.

Gel filtration chromatography (GFC)

Size exclusion chromatography carried out with aqueous mobile phases. Used for the separation of water soluble polymers, most of them biopolymers.

Gel permeation chromatography (GPC)

Size exclusion chromatography carried out with organic mobile phases. Used for the separation and characterisation of organic soluble polymers.

Ghost peak

Unexpected peak due to contamination on any part of the chromatographic system (injector, column, detector cell, etc.).

Gradient elution

HPLC technique where the mobile phase composition changes during the separation. This technique enables difficult separations that cannot be done by isocratic elution. The most common gradients are binary and involve water and an organic solvent such as methanol or acetonitrile.

Guard column

Short column placed immediately before the analytical column and after the injector. The guard column is packed with the same material as the column and retains particles and other contaminants that could damage the analytical column. It is cheaper than the analytical column and discarded when it becomes contaminated.

Height equivalent of a theoretical plate (h) (HETP)

Length where chromatographic equilibrium between mobile and stationary phase is reached; taken as an indication of column quality. h=L/n

where L is the column length and n, the number of theoretical plates.

Injector valve

Part of the chromatographic system that allows the sample to be introduced in the mobile phase stream without noticeable flow interruption. Can be a manual valve or an automated device for multiple unattended injections.

Internal standard

Compound added to both the standard solutions and also to the unknown to help in quantitative analysis. Internal standard (S) is first mixed to a known analyte solution (A) and the ratio of signals is calculated $(A/S)_{known}$. Internal standard (S) is then added to the unknown and the ratio of signals also calculated $(A/S)_{unknown}$. Since the signal ratios are proportional to the concentration ratios, the concentration ratio of [A]/[S] in the unknown is simply the concentration ratio of [A]/[S] in the known solution multiplied by $(A/S)_{unknown}$ and divided by $(A/S)_{unknown}$. Internal standards are desirable

Glossary of chromatography terms

to avoid mistakes produced by loss of sample.

Ion chromatography

Chromatography where the stationary phases are low capacity ion-exchangers and the mobile phase is a weak buffer. Used to determine low concentrations of anions and cations. Conductivity detectors are commonly used. Sometimes an ion suppression device is added to the system in order to remove buffer ions and improve the detection of sample ions.

Ion-exchange chromatography

Chromatography method in which the separation mechanism is ionic interaction between the compounds and the stationary phase. Charged species are exchanged with ions in the ionogenic groups of stationary phase. Retention is based in the affinity of different ions to the site as well as solution parameters (pH, ionic strength, etc.).

Basic functional groups bonded to the phase form anion exchangers. The tetralkylammonium group is a typical strong anion-exchange functional group. An amino group bonded on the rigid adsorbent surface would be the example of a weak anion exchanger.

Acidic groups bonded to the phase form cation exchangers. A sulfonic acid would be an example of a strong cation-exchange group; a carboxylic acid would be a weak cation-exchange group.

Ion-pair chromatography

Relies on the addition of ion pair reagents to the mobile phase in order to avoid non-desirable polar interactions in reverse phase chromatography of polar molecules. Ion pair reagents are large ionic molecules having a hydrophobic part able to interact with the long chain alkyl groups of the stationary phase, as well as a charge opposite to the analyte of interest. When the ion pair reagent is added to the mobile phase, it combines with the analyte counter-ion and a neutral specie is formed. Then, an optimum reverse phase separation is achieved.

Isocratic elution

HPLC technique where the mobile phase composition does not change during the separation.

Linear velocity (u)

Mobile phase speed through the chromatographic system. Related to the flow rate by the cross-sectional area of the column. Typically reported in cm/min. This parameter is used to adapt chromatographic methods to different column diameters. In this case, flow rate must be changed to keep the linear velocity the same.

Mass transfer

Movement of analytes between the mobile phase and the stationary phase to reach an equilibrium. The faster the mass transfer, the better the efficiency of the column. Low mass transfer is one of the causes of band broadening. This is expressed in the Van Deemter equation.

Mean pore diameter

Average pore diameter in porous packings; must be large enough to allow the molecules of analyte to enter and to interact with the stationary phase. Typical pore diameters for silica are between 60 and 125 Å. When analysing peptides or other big molecules, 300 Å is needed.

Microbore

Term applied to HPLC applications or columns used in HPLC where the column inner diameter is less than or equal to 2 mm.

Mobile phase

Liquid phase continuously flowing through the column and carrying the analytes. It can be constituted by one or more components. If the composition of the mobile phase changes during the analysis, a gradient is performed.

Noise

Random fluctuation of the chromatographic signal.

Normal-phase chromatography

Chromatography mode where the mobile phase is a non-polar liquid and the stationary phase is a polar substance. Typical stationary phases are silica, NH_{2} or CN. The mobile phase commonly used is hexane.

Number of theoretical plates (n)

Measure of the efficiency of the column. The larger the number of

theoretical plates of a column, the more complicated sample mixtures can be separated by the column. $n=16(t_{\rm e}/w)^2$ or n=5,54 $(t_{\rm e}/w_{\rm e}/m_{\rm e})^2$

Overload

Negative effect produced when an excess of sample amount is injected in a column. Reduced efficiency and resolution are the results of overloading.

Partition chromatography

Liquid-liquid chromatography. The analytes are distributed between two liquid phases. The stationary phase is chemically bonded to a support and the mobile phase flows freely down the column.

In normal phase partition chromatography, the mobile phase is less polar than the stationary phase.

In reverse phase (RP) chromatography, the mobile phase is more polar than the stationary phase.

Packing material

Generally refers to the stationary phase, but more specifically to the solid support where it is linked (silica, gel, etc.).

Partition coefficient (K)

Refers to the relative presence of analyte in the two phases in liquidliquid chromatography. Usually expressed as the ratio of concentrations present in both phases.

Peak symmetry

Ratio of the distance between the peak apex and the peak end to the distance between the peak apex to the peak front; measured at 10% of the peak height. A value > 1 is a tailing peak while a value < 1 is a fronting peak.

Relative retention (α)

Also known as separation factor. Ratio between the capacity factors of two substances, where the figure in the denominator is the reference compound. $\alpha = \mathbf{k'}_{3}/\mathbf{k'}_{3}$

Residual silanols

Free silanol sites remaining in the silica after it is bonded with stationary phase functional groups (long-chained alkylsilanes). Residual silanols are often endcapped to eliminate undesirable interactions with analytes.

Resolution (Rs)

Refers to the measure of the separation of two adjacent peaks. $Rs = 2(t_{e_2}-t_{e_1})/(w_h+w_a)$

Retention time (t_a) (total)

Time needed for the sample to migrate from the injection point to the maximum response.

Retention time (t'_o) (net)

Difference between total retention time and dead time

Retention volume

Mobile phase volume required to elute the analyte. Calculated by multiplying the retention time by the flow rate.

Reversed-phase chromatography

Liquid chromatography mode where the stationary phase is a non-polar compound (usually octadecyl or octylsilanes) and the mobile phases are polar liquids (usually water, methanol or acetonitrile). Most common HPLC mode.

Sample capacity

Amount of sample that can be injected into a column without overloading it. Usually expressed in grams of sample per gram of packing material.

Selectivity (α)

Relative retention of two analytes measured in one given stationary phase. The higher the selectivity, the better the separation. Also called separation factor. $\alpha = (\mathbf{t}_{\text{R}_2} - \mathbf{t}_{\text{R}_0})/(\mathbf{t}_{\text{R}_1} - \mathbf{t}_{\text{R}_0})$

Sensitivity

Ability of the detector to provide higher signal per amount of sample introduced.

Silica gel

Porous amorphous granulated material commonly used in liquid chromatography. Used both as a direct stationary phase and as a support to chemically bond any other stationary phase (polar or non-polar). Typical particle sizes of silica for analytical HPLC are 3, 5 or 10 µm.

Stationary phase

One of the two phases that participate in the separation mechanism of chromatography. Packed inside the column.

Tailing

Non-Gaussian peak shape where the end part of the peak is elongated as a tail. Tailing is the opposite of FRONTING. Caused by stronger than normal retention of analytes in the stationary phase. A tailing peak has a peak symmetry value > 1.

Van Deemter equation

Mathematical function that expresses the band broadening phenomenon as a sum of three factors: eddy diffusion, longitudinal diffusion and mass transfer. The equation is:

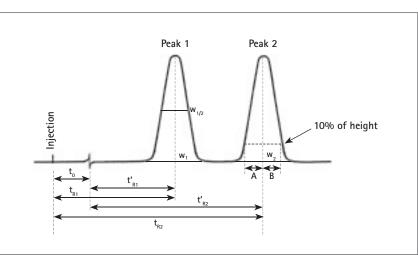
H = A + B/u + Cu

where H is the plate height, u is the linear velocity of the mobile phase, A is the eddy diffusion term, B is the longitudinal diffusion coefficient, and C is the coefficient of the mass transfer term. The lower the value of H,

the more efficient the column.

The eddy diffusion term, A, represents the multitude of pathways by which a component finds its way through the column. In a poorly packed column, the retention time for molecules of the same component can vary significantly depending on the numerous flow paths that could be taken. This effect results in band broadening.

The longitudinal diffusion term, B/u, describes a band broadening process that is inversely related to the mobile phase velocity. The analyte is in the column for a shorter time when the flow rate is high; hence the diffusion term is less.


The mass transfer term, Cu, describes the time available for equilibrium of an analyte to be established between the mobile and stationary phases. At high mobile flow rates there is less time for this equilibrium to take place and a contribution to the broadening effect is observed.

Void (in a column)

Refers to the empty space appearing in the column head because of packing settling or dissolution. Leads to efficiency and resolution loss. Sometimes, the void can be refilled with either packing or glass wool and the performance of the column is recovered.

Void volume (Vo)

Total volume from injector to detector flow cell that can be occupied by the mobile phase.

= Dead time t_o

- t_R t'_R = Retention time
- = Net Retention time
- w = Peak width
- $w_{1/2}$ = Peak width at half height

Capacity factor: $k'_{1} = (t_{R_{1}} - t_{O})/t_{O}$

Number of theoretical plates (efficiency): $n=16 (t_{R_1}/W_1)^2$ or $n = 5,54 (t_{R1}/W_{1/2})^2$

Selectivity: $\alpha = (t_{R_2} - T_{R_0}) / (t_{R_1} - t_{R_0})$ or $\alpha = \frac{k'_2}{k'}$

Symetry = B_{A}

Resolution: $R_s = 2(t_{R_2} - t_{R_1})/(w_2 + w_1)$

Heigh equivalent of a theoretical plate: h = L/n

Conversion tables

Absorbance/Transmittance

Absorbance value is more useful in spectrophotometry than transmittance, because of the fact that plot of absorbance vs concentration yields a straight line. A plot of transmittance vs concentration is an exponential curve.

Transmittance/Absorbance		A =	-log ₁₀ T				
%Т	A (AU)	%T	A (AU)	%T	A (AU)	%T	A (AU)
1	2,000	26	0,585	51	0,292	76	0,119
2	1,699	27	0,569	52	0,284	77	0,114
3	1,523	28	0,553	53	0,276	78	0,108
4	1,398	29	0,538	54	0,268	79	0,102
5	1,301	30	0,523	55	0,260	80	0,097
6	1,222	31	0,509	56	0,252	81	0,092
7	1,155	32	0,495	57	0,244	82	0,086
8	1,097	33	0,481	58	0,237	83	0,081
9	1,046	34	0,469	59	0,229	84	0,076
10	1,000	35	0,456	60	0,222	85	0,071
11	0,959	36	0,444	61	0,215	86	0,066
12	0,921	37	0,432	62	0,208	87	0,060
13	0,886	38	0,420	63	0,201	88	0,056
14	0,854	39	0,409	64	0,194	89	0,051
15	0,824	40	0,398	65	0,187	90	0,046
16	0,796	41	0,387	66	0,180	91	0,041
17	0,770	42	0,377	67	0,174	92	0,036
18	0,745	43	0,367	68	0,167	93	0,032
19	0,721	44	0,357	69	0,161	94	0,027
20	0,699	45	0,347	70	0,155	95	0,022
21	0,678	46	0,337	71	0,149	96	0,018
22	0,658	47	0,328	72	0,143	97	0,013
23	0,638	48	0,319	73	0,137	98	0,009
24	0,620	49	0,310	74	0,131	99	0,004
25	0,602	50	0,301	75	0,125	100	0,000

Flow rate

Resolution and efficiency of two columns of different diameter is the same if the linear velocity of the mobile phase through the column is also the same. Since linear velocity is related to the flow rate by the cross-sectional area of the column it is easy to calculate the new flow rate F_{2} .

 $F_2 = F_1(ID_2)^2/(ID_1)^2$

Where

ID = Internal diameter F = Flow rate

In the table below, every raw contains flow rates (ml/min) giving the same linear velocity for different column diameters:

I.D. = 3 mm	I.D. = 4 mm	I.D. = 4,6 mm	I.D. = 8 mm	I.D. = 10 mm	I.D. = 20 mm
1	1,78	2,35	7,11	11,11	44,44
1,78	1	1,32	4	6,25	25
0,42	0,76	1	3,02	4,73	18,9
0,14	0,25	0,33	1	1,56	6,25
0,09	0,16	0,21	0,64	1	4
0,02	0,04	0,05	0,16	0,25	1

Pressure units

	psi	atm	kg/cm ²	kPa	Bar	mm Hg
psi	1	6,8 10 ⁻²	7,03 10 ⁻²	6,8948	6,895 10 ⁻²	51,715
atm	14,696	1	1,0332	101,32	1,0133	760
kg/cm ²	14,223	0,9678	1	98,06	0,9806	735,5
kPa	0,145	9,87 10 ⁻³	1,02 10 ⁻²	1	10-2	7,501
Bar	14,5038	0,9869	1,0197	100	1	750,1
mm Hg	1,93 10 ⁻²	1,31 10 ⁻³	1,36 10 ⁻³	0,1333	1,333 10 ⁻³	1

 $\boldsymbol{\mathsf{R}}$ and $\boldsymbol{\mathsf{S}}$ phrases

HPLC Solvents and Reagents

R: Risk phrases

R: Risk	phrases
1	Explosive when dry.
2	Risk of explosion by shock, friction, fire or other sources of ignition.
3	Extreme risk of explosion by shock, friction, fire or other sources of ignition.
4	Forms very sensitive explosive metallic compounds.
5	Heating may cause an explosion.
6	Explosive with or without contact with air.
7	May cause fire.
8 9	Contact with combustible material may cause fire. Explosive when mixed with combustible material.
10	Flammable.
11	Highly flammable.
12	Extremely flammable.
13	Extremely flammable liquefied gas.
14 15	Reacts violently with water. Contact with water liberates extremely flammable
10	gases.
16	Explosive when mixed with oxidising substances.
17	Spontaneously flammable in air.
18	In use, may form flammable/explosive vapour-air mixture.
19	May form explosive peroxides.
20	Harmful by inhalation.
21	Harmful in contact with skin.
22	Harmful if swallowed.
23 24	Toxic by inhalation. Toxic in contact with skin.
24	Toxic if swallowed.
26	Very toxic by inhalation.
27	Very toxic in contact with skin.
28	Very toxic if swallowed.
29 30	Contact with water liberates toxic gas. Can become highly flammable in use.
30	Contact with acids liberates toxic gas.
32	Contact with acids liberates very toxic gas.
33	Danger of cumulative effects.
34	Causes burns.
35 36	Causes severe burns. Irritating to eyes.
37	Irritating to respiratory system.
38	Irritating to skin.
39	Danger of very serious irreversible effects
40 41	Limited evidence of a carcinogenic effect. Risk of serious damage to eyes.
41	May cause sensitisation by inhalation.
43	May cause sensitisation by skin contact.
44	Risk of explosion if heated under confinement.
45	May cause cancer.
46 47	May cause heritable genetic damage. May cause birth defects.
48	Danger of serious damage to health by prolonged
	exposure.
49	May cause cancer by inhalation.
50	Very toxic to aquatic organisms.
51 52	Toxic to aquatic organisms. Harmful to aquatic organisms.
53	May cause long-term adverse effects in the aquatic
	environment.
54	Toxic to flora.
55	Toxic to fauna.
56 57	Toxic to soil organisms. Toxic to bees.
58	May cause long-term adverse eflects in the
	environment.
59	Dangerous for the ozone layer.
60 61	May impair fertility.
61 62	May cause harm to the unborn child. Possible risk of impaired fertility.
63	Possible risks of harm to the unborn child.
64	May cause harm to breastfed babies
65	Harmful: may cause lung damage if swallowed.
67	Vapours may cause drowsiness and dizziness.

66	Repeated	esposure	may	cause	skin	dryness	or
	cracking.						

68 Possible risk of irreversible effects.

Combination of particulars risks

combil	action of particulars fisks
14/15	Reacts violently with water, liberating extremely
15/29	flammable gases. Contact with water liberates toxic, extremely
20/21	flammable gas. Harmful by inhalation and in contact with skin.
20/21/22	Harmful by inhalation, in contact with skin and if
	swallowed.
20/22	Harmful by inhalation and if swallowed.
21/22	Harmful in contact with skin and if swallowed.
23/24	Toxic by inhalation and in contact with skin.
23/24/25	Toxic by inhalation, in contact with skin and if swallowed.
23/25	Toxic by inhalation and if swallowed.
24/25	Toxic in contact with skin and if swallowed.
26/27	Very toxic by inhalation and in contact with skin.
26/27/28	Very toxic by inhalation, in contact with skin and if swallowed.
26/28	Very toxic by inhalation and if swallowed.
27/28	Very toxic in contact with skin and if swallowed
36/37	Irritating to eyes and respiratory system.
36/37/38	Irritating to eyes, respiratory system and skin.
36/38	Irritating to eyes and skin
37/38	Irritating to respiratory system and skin
39/23	Toxic: danger of very serious irreversible effects
	through inhalation.
39/23/24	Toxic: danger of very serious irreversible effects
	through inhalation and in contact with skin.
39/23/24/25	Toxic: danger of very serious irreversible effects
	through inhalation, in contact with skin and if
00/00/05	swallowed.
39/23/25	Toxic danger of very serious irreversible effects
20/24	through inhalation and if swallowed.
39/24	Toxic: danger of very serious irreversible effects in contact with skin.
39/24/25	Toxic: danger of very serious irreversible effects in
55/24/25	contact with skin and if swallowed.
39/25	Toxic: danger of very serious irreversible effects if
	swallowed.
39/26	Very toxic: danger of very serious irreversible effects
	through inhalation.
39/26/27	Very toxic: danger of very serious irreversible effects
	through inhalation and in contact with skin.
39/26/27/28	Very toxic: danger ol very serious irreversible effects
	through inhalation, in contact with skin and if
00/00/00	swallowed.
39/26/28	Very toxic: danger of very serious irreversible effects
39/27	through inhalation and if swallowed. Very toxic: danger of very serious irreversible effects
39/27	in contact with skin.
39/27/28	Very toxic: danger of very serious irreversible effects
33/27/20	in contact with skin and if swallowed.
39/28	Very toxic: danger of very serious irreversible effects
	if swallowed.
40/20	Harmful: possible risk of irreversible effects through
	inhalation.
40/20/21	Harmful: possible risk of irreversible effects through
	inhalation and in contact with skin.
40/20/21/22	Harmful: possible risk of irreversible effects through
	inhalation, in contact with skin and if swallowed.
40/20/22	Harmful: possible risk of irreversible effects through
	inhalation and if swallowed.
40/21	Harmful: possible risk of irreversible effects in
	contact with skin.
40/21/22	Harmful: possible risk of irreversible effects in
10/00	contact with skin and if swallowed.
40/22	Harmful possible risk of irreversible effects if
42/43	swallowed. May cause sensitization by inholation and skin contact
+2/43	May cause sensitisation by inhalation and skin contact.

 \boldsymbol{R} and \boldsymbol{S} phrases

HPLC Solvents and Reagents

48/20	Harmful: danger of serious damage to health by
48/20/21	prolonged exposure.
40/20/21	Harmful: danger of serious damage to health by prolonged exposure through inhalation and in
	contact with skin.
10/20/21/22	
+8/20/21/22	Harmful: danger of serious damage to health by
	prolonged exposure through inhalation, in contact
10/20/22	with skin and if swallowed.
48/20/22	Harmful: danger of serious damage to health by
	prolonged exposure through inhalation and if
10/01	swallowed.
48/21	Harmful: danger of serious damage to health by
10/04/00	prolonged exposure in contact with skin.
48/21/22	Harmful: danger of serious damage to health by
	prolonged exposure in contact with skin and if
10/00	swallowed.
48/22	Harmful: danger of serious damage to health by
10/00	prolonged exposure if swallowed.
48/23	Toxic: danger of serious damage to health by
10/00/01	prolonged exposure through inhalation.
48/23/24	Toxic: danger of serious damage to health by
	prolonged exposure through inhalation and in
10/00/	contact with skin.
48/23/24/25	Toxic: danger of serious damage to health by
	prolonged exposure through inhalation, in contact
alac /-	with skin and if swallowed.
48/23/25	Toxic: danger of serious damage to health by
	prolonged exposure through inhalation and if
/	swallowed.
48/24	Toxic: danger of serious damage to health by
	prolonged exposure in contact with skin.
48/24/25	Toxic: danger of serious damage to health by
	prolonged exposure in contact with skin and if
	swallowed.
48/25	Toxic: danger of serious damage to health by
=o/=c	prolonged exposure if swallowed.
50/53	Very toxic to aquatic organisms, may cause long-
/	term adverse effects in the aquatic environment.
52/53	Harmful to acquatic organisms, may cause long-
- 1 - 0	term adverse effects in the acquatic environment.
51/53	Toxic to acquatic organisms, may cause long-term
20/20	effects in the aquatic environment.
68/20	Harmful: possible risk of irreversible effects through
no loc	inhalation.
68/21	Harmful: possible risk of irreversible effects in
	contact with skin.
68/22	Harmful: possible risk of irreversible effects if
(/	swallowed.
68/20/21	Harmful: possible risk of irreversible effects through
	inhalation and in contact with skin.
68/20/22	Harmful: possible risk of irreversible effects through
	inhalation and if swallowed.
68/21/22	Harmful: possible risk of irreversible effects in
	contact with skin and if swallowed.
68/20/21/22	Harmful: possible risk of irreversible effects through
	inhalation, in contact with skin and if swallowed.
	u physics
s: safet	y phrases
1	Keep locked up.
2	Keep out of reach of children.
3	Keep in a cool place.
1	Keep away from living quarters.
5	Keep contents under _ (appropriate liquid to be
	specified by the manufacturer)
5.3	Keep contents under paraffin oil.
6	Keep under (inert gas to be specified by the
	manufacturer)
7	Keep container tightly closed.
3	Keep container dry.
<i>.</i>	
	Keep container in a well ventilated place.
9 12	Keep container in a well ventilated place. Do not keep the container sealed.

- 13 Keep away from food, drink and animal feeding stuffs.
 - 14 Keep away from _ (incompatible materials to be indicated by the manufacturer)

14.1	Keep away from alkalis.
14.2	Keep away from oxidizing and acidic substances as
	well as heavy metal compounds.
14.9	Keep away from flammable organic substances.
15	Keep away from heat.
16	
	Keep away from sources of ignition – No Smoking.
17	Keep away from combustible material.
18	Handle and open container with care.
20	When using do not eat or drink.
21	When using do not smoke.
22	Do not breathe dust.
23	Do not breathe gas/fumes/vapour/sray (appropiate
	wording to be specified by the manufacturer).
23.2	Do not breathe vapour.
24	Avoid contact with skin.
25	Avoid contact with eyes.
26	In case of contact with eyes, rinse immediately with
	plenty of water and seek medical advice.
27	Take off immediately all contaminated clothing.
28	After contact with skin, wash immediately with plenty
20	
20.1	of _ (to be specified by the manufacturer).
28.1	After contact with skin, wash immediately with plenty
	of water.
28.2	After contact with skin, wash immediately with soap
	and water.
28.3	After contact with skin, wash immediately with soap
	and water, if possible also with polyethylene glycol 400.
28.6	After contact with skin, wash immediately with
	polyethylene glycol 400 (then rinse with plenty of water).
29	Do not empty into drains.
30	Never add water to this product.
33	Take precautionary measures against static
	discharges.
34	Avoid shock and friction.
35	This material and its container must be disposed of in
00	a safe way.
36	Wear suitable protective clothing.
37	Wear suitable gloves.
	5
38	In case of insufficient ventilation, wear suitable
	respiratory equipment.
39	Wear eye/face protection.
40	To clean the floor and all objects contaminated by this
	material use _ (to be specified by the manufacturer).
41	In case of fire and/or explosion do not breathe fumes.
42	During fumigation/spraying wear suitable respiratory
	equipment (appropriate wording to be specified)
43	In case of fire, use _ (indicate in the space the precise
	type of fire-lighting equipment. If water increases the
	risk add - Never use water)
43.1	In case of fire, use water.
43.3	In case of fire, use powder extinguisher. Never use
	water.
43.6	In case of fire, use sand. Never use water.
43.7	In case of fire, use metal-fire powder. Never use
+3.7	water.
42.0	
43.8	In case of fire, use sand, carbon dioxide or powder
	extinguisher. Never use water.
44	If you feel unwell, seek medical advice (show the label
	where possible)
45	In case of accident or if you feel unwell, seek medical
	advice immediately (show the label where possible)
46	If swallowed seek medical advice immediately and
	show this container or label
47	Keep at temperature not exceeding _ °C (to be specified
	by the manufacturer)
48	Keep wetted with _ (appropriate material to be
	specified by the manufacturer)
49	Keep only in the original container.
50	Do not mix with _ (to be specified by the
	manufacturer)
50.1	Do not mix with acids.
50.1	
51	Use only in well ventilated areas.
52	Not recommended for interior use on large surface areas.
53	Avoid exposure - obtain special instruction before use.
54	Obtain the consent of pollution control authorities

before discharging to wastewater treatment plants.

- Treat using the best available techniques before discharge into drains or the aquatic environment.
 Dispose of this material and its containes at hazardous or special waste collection point.
- 57 Use appropriate containment to avoid environmental contamination.
- 58 To be disposed of as hazardous waste.
- 59 Refer to manufacturer/supplier for information on recovery/recycling
- 60 This material and its container must be disposed of as hazardous waste.
- 61 Avoid release to the environment.Refer to special instructions/Safety data sheets.
- 62 If swallowed, do not induce vomiting: seek medical advice immediately and show this container or label.
- 63 In case of accident by inhalation: remove casualty to fresh air and keep at rest.
- 64 If swallowed, rinse mouth with water (only if the person is conscious).

Combination of safety precautions

1/2 3/7	Keep locked up and out of reach of children.
3/7/9 3/7/9	Keep container tightly closed in a cool place. Keep container tightly closed, in a cool well ventilated place.
3/9	Keep in a cool well ventilated place
3/9/14	Keep in a cool, well ventilated place away from _ (incompatible materials to be indicated by the manufacturer)
3/9/14.1	Keep in a cool, well ventilated place away from alkalis.
3/9/14/49	Keep only in the original container in a cool, well- ventilated place away from (incompatible materials to be indicated by the manufacturer).
3/9/49	Keep only in the original container in a cool, well- ventilated place.
3/14	Keep in a cool place away from (incompatible materials to be indicated by the manufacturer).
7/8	Keep container tightly closed and dry.
7/9	Keep container tightly closed and in a well-ventilated place.
20/21	When using do not eat, drink or smoke.
24/25	Avoid contact with skin and eyes.
27/28	After contact with skin, take off immediately all contaminated clothing, and wash immediately with plenty of (to be specified by the manufacturer).
29/35	Do not empty into drains; dispose of this material and its container in a safe way.
36/37	Wear suitable protective clothing and gloves.
36/37/39	Wear suitable protective clothing, gloves and eye/face protection.
36/39	Wear suitable protective clothing and eye/face protection.
37/39	Wear suitable gloves and eye/face protection.
47/49	Keep only in the original container at temperature not exceeding \circ C (to be specified by the manufacturer).

